Subscribe to RSS
DOI: 10.1055/a-1979-6245
Two-Step Substitution Reaction of Phosphonates Carrying a Binaphthyl Group with Grignard Reagents Leading to the Formation of P-Chirogenic Phosphine Oxides
This research was partly supported by a Grant-in-Aid for Scientific Research (C) (22K05109) and (B) (19H02712) from MEXT.
This paper is dedicated to Professor Masahiro Murakami for his contribution to science.
Abstract
The reaction of phosphonates carrying a binaphthyl group with a range of Grignard reagents was complete within two hours at 0 °C to give phosphinates carrying a hydroxybinaphthyl group with high efficiency and diastereoselectivity. The resulting phosphinates were further subjected to a substitution reaction with MeMgBr. The reaction at reflux temperature in THF or toluene permitted the formation of P-chirogenic tertiary phosphine oxides with a high enantiomeric ratio. Rare examples of P-chirogenic alkynyl phosphine oxides were also obtained. The sequential one-pot substitution reaction of phosphonates bearing a binaphthyl group with two different Grignard reagents successfully gave the corresponding P-chirogenic phosphine oxides with enantiomeric ratios nearly equal to those of oxides derived from two-step reactions.
Key words
chirogenic compounds - phosphine oxides - binaphthyl phosphonates - chirality transfer reaction - one-pot reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1979-6245.
- Supporting Information
Publication History
Received: 25 October 2022
Accepted: 15 November 2022
Accepted Manuscript online:
15 November 2022
Article published online:
01 December 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Lemouzy S, Giordano L, Hérault D, Buono G. Eur. J. Org. Chem. 2020; 3351
- 1b Gbubele JD, Olszewski TK. Org. Biomol. Chem. 2021; 19: 2823
- 1c Glueck D. Synthesis 2022; 54: 271
- 2a Warner CJ. A, Reeder AT, Jones S. Tetrahedron: Asymmetry 2016; 27: 136
- 2b Tsurui M, Kitagawa Y, Fushimi K, Gon M, Tanaka K, Hasegawa Y. Dalton Trans. 2020; 49: 5352
- 2c Tanase T, Nakamae K, Okawa Y, Hamada M, Matsumoto A, Nakajima T, Nakashima T, Kawai T. Chem. Eur. J. 2022; 28: e202104060
- 3a Li H, Luo J, Li B, Yi X, He Z. Org. Lett. 2017; 19: 5637
- 3b DePorre YC, Annand JR, Bar S, Schindler CS. Org. Lett. 2018; 20: 2580
- 4 Finkbeiner P, Hehn JP, Gnamm C. J. Med. Chem. 2020; 63: 7081
- 5a Qiu H, Dai Q, He J, Li W, Zhang J. Chem. Sci. 2020; 11: 9983
- 5b Li Y.-B, Tian H, Yin L. J. Am. Chem. Soc. 2020; 142: 20098
- 5c You Z, Higashida K, Iwai T, Sawamura M. Angew. Chem. Int. Ed. 2021; 60: 5778
- 5d Wu Z.-H, Cheng A.-Q, Yuan M, Zhao Y.-X, Yang H.-L, Wei L.-H, Wang H.-Y, Wang T, Zhang Z, Duan W.-L. Angew. Chem. Int. Ed. 2021; 60: 27241
- 5e Dai Q, Liu L, Zhang J. Angew. Chem. Int. Ed. 2021; 60: 27247
- 5f Liu X.-T, Han X.-Y, Wu Y, Sun Y.-Y, Gao L, Huang Z, Zhang Q.-W. J. Am. Chem. Soc. 2021; 143: 11309
- 5g Varga B, Szemesi P, Nagy P, Herbay R, Holczbauer T, Fogassy E, Keglevich G, Bagi P. J. Org. Chem. 2021; 86: 14493
- 5h Zhang YQ, Han X.-Y, Wu Y, Qi P.-J, Zhang Q, Zhang QW. Chem. Sci. 2022; 13: 4095
- 5i Zhang Y, Yuan J, Huang G, Yu H, Liu J, Chen J, Meng S, Zhong J.-J, Dang L, Yu G.-A, Che C.-M. Chem. Sci. 2022; 13: 6519
- 5j Cai W.-Q, Wei Q, Zhang Q.-W. Org. Lett. 2022; 24: 1258
- 6a Lin Y, Ma W.-Y, Sun Q.-Y, Cui Y.-M, Xu L.-W. Synlett 2017; 28: 1432
- 6b Woźnicki P, Korzeniowska E, Stankevič M. J. Org. Chem. 2017; 82: 10271
- 6c Jang Y.-S, Woźniak Ł, Pedroni J, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 12901
- 6d Wang Z, Hayashi T. Angew. Chem. Int. Ed. 2018; 57: 1702
- 6e Yang G.-H, Li Y, Li X, Cheng J.-P. Chem. Sci 2019; 10: 4322
- 6f Song S.-Y, Li Y, Ke Z, Xu S. ACS Catal. 2021; 11: 13445
- 6g Huang Q.-H, Zhou Q.-Y, Yang C, Chen L, Cheng J.-PLi X. Chem. Sci 2021; 12: 4582
- 6h Forbes KC, Jacobsen EN. Science 2022; 376: 1230
- 7 Rusmore TA, Behlen MJ, John A, Glatzhofer DT, Nicholas KM. Mol. Catal. 2021; 513: 111776
- 8a Xu Q, Zhao C.-Q, Han L.-B. J. Am. Chem. Soc. 2008; 130: 12648
- 8b Dziuba K, Lubańska M, Pietrusiewicz KM. Synthesis 2020; 52: 909
- 8c Rojo P, Riera A, Verdaguer X. Org. Lett. 2021; 23: 4802
- 9a Adams H, Collins RC, Jones S, Warner CJ. A. Org. Lett. 2011; 13: 6576
- 9b Han ZS, Goyal N, Herbage MA, Sieber JD, Qu B, Xu Y, Li Z, Reeves JT, Desrosiers J.-N, Ma S, Grinberg N, Lee H, Mangunuru HP. R, Zhang Y, Krishnamurthy D, Lu BZ, Song JJ. Wang G, Senanayake CH. J. Am. Chem. Soc. 2013; 135: 2474
- 9c Nikitin K, Rajendran KV, Müller-Bunz H, Gilheany DG. Angew. Chem. Int. Ed. 2014; 53: 1906
- 9d Copey L, Jean-Gérard L, Framery E, Pilet G, Robert V, Andrioletti B. Chem. Eur. J. 2015; 21: 9057
- 9e Han ZS, Wu H, Xu Y, Zhang Y, Qu B, Li Z, Caldwell DR, Fandrick KR, Zhang L, Roschangar F, Song JJ, Senanayake CH. Org. Lett. 2017; 19: 1796
- 9f Xu D, Rivas-Bascón N, Padial NM, Knouse KW, Zheng B, Vantourout JC, Schmidt MA, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2020; 142: 5786
- 9g Xu R, Gao Z, Yu Y, Tang Y, Tian D, Chen T, Chen Y, Xu G, Shi E, Tang W. Chem. Commun. 2021; 57: 3335
- 9h Mondal A, Thiel NO, Dorel R, Feringa BL. Nat. Catal. 2022; 5: 10
- 10a Tsuchiya Y, Yamaguchi K, Miwa Y, Kutsumizu S, Minoura M, Murai T. Bull. Chem. Soc. Jpn. 2020; 93: 927
- 10b Pamungkas KK. P, Maruyama T, Murai T. Org. Biomol. Chem. 2021; 19: 6804
- 10c Murai T, Wada R, Iwata K, Maekawa Y, Kuwabara K, Minoura M. Organics 2021; 2: 395
- 10d Pamungkas KK. P, Maruyama T, Murai T. RSC Adv. 2022; 12: 14698
- 11a Murai T, Hayashi T, Yamada K, Maekawa Y, Minoura M. Chem. Commun. 2014; 50: 12473
- 11b Maekawa Y, Kuwabara K, Sugiyama A, Iwata K, Maruyama T, Murai T. Chem. Lett. 2017; 46: 1068
- 11c Kuwabara K, Maekawa Y, Minoura M, Murai T. Org. Lett. 2018; 20: 1375
- 11d Kuwabara K, Maekawa Y, Ebihara M, Maruyama T. Heteroat. Chem. 2018; 29: e21448
- 11e Kuwabara K, Maekawa Y, Minoura M, Maruyama T, Murai T. J. Org. Chem. 2020; 85: 14446
- 11f Endo C, Inoue Y, Maruyama T, Minoura M, Murai T. Synthesis 2022;
- 12 Kawajiri A, Udagawa T, Minoura M, Murai T. ChemistryOpen 2022; e202100294
- 13 2′-Hydroxy-1,1′-binaphthalen-2-yl phosphinates 2a–i; General Procedure A dry two-necked round-bottomed flask equipped with a magnetic stirrer bar was charged with a solution of phosphonate 1 (1 equiv) in anhyd THF under an argon atmosphere. The solution was cooled to 0 °C and the appropriate Grignard reagent (1.1 equiv) was added dropwise over 10 min, and the solution was stirred at 0 °C for a further 30 min. The reaction was then quenched with sat. aq NH4Cl, and the mixture was extracted with Et2O (×3). The combined organic layer was washed with H2O, dried (MgSO4), filtered, and concentrated. The crude product was purified by column chromatography (silica gel, hexane–EtOAc). (Sax ,R P)-2′-Hydroxy-1,1′-binaphthalen-2-yl ethyl(phenyl)phos-phinate [(Sax ,R P)-2c] White solid; yield: 1.14 g (74%); mp 196–200 °C. 1H NMR (CDCl3): δ = 0.79 (dt, J = 7.6, 7.6, 19.3 Hz, 3 H), 1.57–1.82 (m, 2 H), 5.05 (br, OH, 1 H), 7.1 (d, J = 8.1 Hz, 1 H), 7.17–7.34 (m, 9 H), 7.37–7.41 (m, 1 H), 7.43–7.47 (m, 1 H), 7.75–7.80 (m, 2 H), 7.76 (d, J = 9.0 Hz, 1 H), 7.91 (d, J = 8.1 Hz, 1 H), 7.98 (d, J = 9.0 Hz, 1 H). 13C NMR (CDCl3): δ = 5.6 (d, 2 JC –P = 4.7 Hz, CH3), 23.6 (d, 1 JC –P = 97.7 Hz, CH2), 115.4, 118.8, 120.7, 120.8, 121.6, 123.4, 124.7, 125.5, 125.6, 126.5, 127.4, 127.9, 128.2, 128.3, 129.0, 129.4 (d, 1 JC –P = 128.8 Hz), 130.0, 130.1, 130.7, 130.9, 131.2, 132.1, 133.5, 147.9, 147.9, 151.9. 31P NMR (CDCl3): δ = 48.7 (s). MS (EI): m/z = 438 (M+). HRMS (EI): m/z [M+] calcd for C28H23O3P: 438.1385; found: 438.1387.
- 14 CCDC 2209996 and 2209934 contain the supplementary crystallographic data for compounds (ax,R P)-S 2c and -2g, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 15 (R P)-Ethyl(methyl)phenylphosphine Oxide [(R P)-3a]9a; Typical Procedure A two-necked flask was charged with (Sax )- 2c (0.088 g, 0.2 mmol) and anhyd THF (1.2 mL), and the solution was warmed to 65 °C. M A 3.0 M solution of MeMgBr in THF (0.15 mL, 0.44 mmol) was added dropwise over 15 min, and the mixture was then stirred for 1 h. Sat. aq NH4Cl aqueous was added and the mixture was extracted with CH2Cl2 (×3). The combined organic layer was dried (MgSO4), filtered, and concentrated. The crude product was purified by column chromatography on [silica gel, CH2Cl2–MeOH (19:1)] to give a colorless liquid; yield: 0.030 g (88%). Rf = 0.4 (CH2Cl2–MeOH, 19:1); [α]D 25 0.20 (c = 1.00, MeOH). Chiral HPLC (Chiralpack IH, hexane–i-PrOH 8:2, 1 mL/min): R t = 8.10 min. 1H NMR (CDCl3): δ = 1.07 (dt, J = 7.6, 7.6, 17.5 Hz, 3 H), 1.65 (d, J = 12.6 Hz, 3 H), 1.81–1.99 (m, 2 H), 7.41–7.50 (m, 3 H, Ar), 7.63–7.68 (m, 2 H, Ar). 31P NMR (CDCl3): δ = 40.1 (s).
- 16a Korpiun O, Lewis RA, Chickos J, Mislow K. J. Am. Chem. Soc. 1968; 90: 4842
- 16b Keisar OR, Ashkenazi N. ChemistrySelect 2018; 3: 13619
- 17 Peltzer RM, Gauss J, Eisenstein O, Cascella M. J. Am. Chem. Soc. 2020; 142: 2984
- 18a Kolodiazhnyi OI, Kolodiazhna A. Tetrahedron: Asymmetry 2017; 28: 1651
- 18b Ye J.-J, Nie S.-Z, Wang J.-P, Wen J.-H, Zhang Y, Qiu M.-R, Zhao C.-Q. Org. Lett. 2017; 19: 5384
- 19a Nishida G, Noguchi K, Hirano M, Tanaka K. Angew. Chem. Int. Ed. 2008; 47: 3410
- 19b Zhang Y, Zhang F, Chen L, Xu J, Liu X, Feng X. ACS Catal. 2019; 9: 4834
- 19c Zhu R.-Y, Chen L, Hu X.-S, Zhou F, Zhou J. Chem. Sci. 2020; 11: 97
- 20 Nishiyama Y, Hazama Y, Yoshida S, Hosoya T. Org. Lett. 2017; 19: 3899
For recent reviews, see:
For recent examples, see:
For recent examples, see: