Synlett, Inhaltsverzeichnis Synlett 2023; 34(04): 369-373DOI: 10.1055/a-1982-5185 letter Palladium-Catalyzed C(sp2)–H Silylation via a Native-Amine-Directed Strategy Yintao Yan‡ a School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. of China , Xuan Wang‡ a School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. of China , Jianhua Li∗ b Lianhe Chemical Technology Co., Ltd., Jiangkou Avenue, Taizhou, Zhejiang 318020, P. R. of China , Chao Jiang ∗ a School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. of China› InstitutsangabenArtikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract A palladium-catalyzed C(sp2)–H silylation of morpholinones to afford silyl morpholinones is reported. The native secondary amine, which is tolerated in the reaction, is able to promote the C–H activation and silylation of the aryl group. The substrates are monosilylated selectively and tolerate various functional groups. The resulting silyl morpholinone derivatives are potentially useful in pharmaceuticals and agrochemicals. Key words Key wordspalladium - C–H activation - C(sp2)–H Silylation - morpholinone - organosilicon compounds Volltext Referenzen References and Notes 1a Colvin EW. Silicon Reagents in Organic Synthesis . Academic Press; London: 1988 1b Rappoport Z, Apeloig Y. Chemistry of Organosilicon Compounds . Wiley-VCH; New York: 2001 1c Rochow EG. Silicon and Silicones . Springer; New York: 1987 1d Corey JY, Braddock-Wilking J. Chem. Rev. 1999; 99: 175 1e Mochida K, Shimizu M, Hiyama T. J. Am. Chem. Soc. 2009; 131: 8350 2a Liang Y, Zhang SG, Xi ZF. J. Am. Chem. Soc. 2011; 133: 9204 2b Cheng C, Hartwig JF. Science 2014; 343: 853 2c Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893 2d Wu Z, Wu ZC, Sun XL, Qi WX, Zhang ZY, Zhang YH. Org. Lett. 2021; 23: 7161 2e Ji X, Wei F, Wan B, Cheng C, Zhang Y. Chem. Commun. 2020; 56: 7801 2f Yang C, Wang J, Li JH, Ma WC, An K, He W, Jiang C. Adv. Synth. Catal. 2018; 360: 3049 3a Mortensen M, Husmann R, Veri E, Bolm C. Chem. Soc. Rev. 2009; 38: 1002 3b Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388 3c Zhang M, Gao S, Tang J, Ling Chen L, Liu AH, Sheng SR, Zhang AQ. Chem. Commun. 2021; 57: 8250 3d Liu P, Hao N, Yang D, Wan LY, Wang TY, Zhang T, Zhou R, Cong XF, Kong J. Org. Chem. Front. 2021; 8: 2442 3e Zhou B, Lu AL, Zhang YH. Synlett 2019; 30: 685 3f Gu YT, Shen YY, Zarate C, Martin R. J. Am. Chem. Soc. 2019; 141: 127 4a Yang B, Yang W, Guo YH, You LJ, He C. Angew. Chem. Int. Ed. 2020; 59: 22217 4b Li W, Huang XL, You JS. Org. Lett. 2016; 18: 666 4c Kon K, Suzuki H, Takada K, Kohari Y, Namikoshi T, Watanabe S, Murata M. ChemCatChem 2016; 8: 2202 4d Kakiuchi F, Tsuchiya K, Matsumoto M, Mizushima E, Chatani N. J. Am. Chem. Soc. 2004; 126: 12792 4e Karmel C, Li BJ, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 1460 4f Kuninobu Y, Nakahara T, Takeshima H, Takai K. Org. Lett. 2013; 15: 426 4g Mita T, Michigami K, Sato Y. Chem. Asian J. 2013; 8: 2970 4h Su B, Lee T, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 18032 4i Simmons EM, Hartwig JF. Nature 2012; 483: 70 4j Tsukada N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 5022 4k Li B, Dixneuf PH. Chem. Soc. Rev. 2021; 50: 5062 4l Sarkar W, Mishra A, Bhowmik A, Deb I. Org. Lett. 2021; 23: 4521 4m Guo HF, Chen X, Zhao CL, He W. Chem. Commun. 2015; 51: 17410 4n Zhang QW, An K, Liu LC, Yue Y, He W. Angew. Chem. Int. Ed. 2015; 54: 6918 5 Kanyiva KS, Kuninobu Y, Kanai M. Org. Lett. 2014; 16: 1968 6a Pan JL, Li QZ, Zhang TY, Hou SH, Kang JC, Zhang SY. Chem. Commun. 2016; 52: 13151 6b Liu YJ, Liu YH, Zhang ZZ, Yan SY, Chen K, Shi BF. Angew. Chem. Int. Ed. 2016; 55: 13859 6c Deb A, Singh S, Seth K, Pimparkar S, Bhaskararao B, Guin S, Sunoj RB, Maiti D. ACS Catal. 2017; 7: 8171 6d Zhan BB, Fan J, Jin L, Shi BF. ACS Catal. 2019; 9: 3298 6e Hartwig JF. Acc. Chem. Res. 2012; 45: 864 6f Cheng C, Hartwig JF. Chem. Rev. 2015; 115: 8946 6g Xiao PH, Gao L, Song ZL. Chem. Eur. J. 2019; 25: 2407 6h Li JH, Jiang C. Org. Lett. 2021; 23: 5359 7 Chen CP, Guan MY, Zhang JY, Wen ZK, Zhao YS. Org. Lett. 2015; 17: 3646 8 Pan JL, Chen C, Ma ZG, Zhou J, Wang LR, Zhang SY. Org. Lett. 2017; 19: 5216 9 Li WG, Chen WQ, Zhou B, Xu YK, Deng GB, Liang Y, Yang Y. Org. Lett. 2019; 21: 2718 10 Wu YJ, Yao QJ, Chen HM, Liao G, Shi BF. Sci. China: Chem. 2020; 63: 875 11a Modak A, Patra T, Chowdhury R, Raul S, Maiti D. Organometallics 2017; 36: 2418 11b Maji A, Guin S, Feng S, Dahiya A, Singh VK, Liu P, Maiti D. Angew. Chem. Int. Ed. 2017; 56: 14903 12 Li JH, Ding MY, Jiang C. Org. Lett. 2021; 23: 9036 13a Reynolds T. Phytochemistry 2005; 66: 1399 13b Zhang Q, Tu G, Zhao Y, Cheng T. Tetrahedron 2002; 58: 6795 13c Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338 13d Yang Y, Shi SL, Niu D, Liu P, Buchwald SL. Science 2015; 349: 62 13e Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613 13f Chen FF, Zheng GW, Liu L, Li H, Chen Q, Li FL, Li CX, Xu JH. ACS Catal. 2018; 8: 2622 13g Dong L, Meng Q, Ramírez-Palacios C, Wijma HJ, Marrink SJ, Janssen DB. Catalysts 2020; 10: 1310 13h Yin Z, Zeng H, Wu J, Zheng S, Zhang G. ACS Catal. 2016; 6: 6546 14 He C, Whitehurst WG, Gaunt MJ. Chem 2019; 5: 1031 15a McNally A, Haffemayer B, Collins BS. L, Gaunt MJ. Nature 2014; 510: 129 15b Smalley AP, Cuthbertson JD, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 1412 15c Zakrzewski J, Smalley AP, Kabeshov MA, Gaunt MJ, Lapkin AA. Angew. Chem. Int. Ed. 2016; 55: 8878 16a Nappi M, He C, Whitehurst WG, Chappell BG. N, Gaunt MJ. Angew. Chem. Int. Ed. 2018; 57: 3178 16b Nappi M, Gaunt MJ. Organometallics 2019; 38: 143 17a Cabrera-Pardo JR, Trowbridge A, Nappi M, Ozaki K, Gaunt MJ. Angew. Chem. Int. Ed. 2017; 56: 11958 17b Hogg KF, Trowbridge A, Alvarez-Perez A, Gaunt MJ. Chem. Sci. 2017; 8: 8198 17c Png ZM, Cabrera-Pardo JR, Cadahía JP, Gaunt MJ. Chem. Sci. 2018; 9: 7628 17d Ho DK. H, Calleja J, Gaunt MJ. Synlett 2019; 30: 454 18 He C, Gaunt MJ. Angew. Chem. Int. Ed. 2015; 54: 15840 19 He C, Gaunt MJ. Chem. Sci. 2017; 8: 3586 20 Buettner CS, Willcox D, Chappell BG. N, Gaunt MJ. Chem. Sci. 2019; 10: 83 21 General Procedure for the Synthesis of 2a Substrate 1a (0.10 mmol), Pd(OAc)2 (0.01 mmol, 2.2 mg), CuBr2 (0.03 mmol, 6.7 mg), AgTFA (0.30 mmol, 66.0 mg), and (SiMe3)2 (0.30 mmol, 43.9 mg) were weighed into a 10 mL tube with a magnetic stir bar under air. Toluene (3.0 mL) was added, and the tube was sealed with a cap. Then the mixture was stirred at 90 °C for 12 h. Upon completion, the reaction mixture was cooled to room temperature and diluted with EtOAc, filtered through a plug of Celite, and the solvent was removed under vacuum. After purification by column chromatography (hexane–EtOAc = 10:1 as eluent), 2a was obtained as a white solid (18.9 mg, 65%). Analytical Data for Compound 2a White solid; mp 80.5 °C; Rf = 0.41 (hexane–EtOAc = 10:1). 1H NMR (500 MHz, CDCl3): δ = 7.71 (dd, J = 7.0, 1.4 Hz, 1 H), 7.34–7.30 (m, 1 H), 7.27–7.21 (m, 2 H), 3.76 (d, J = 11.6 Hz, 1 H), 3.73 (d, J = 11.5 Hz, 1 H), 1.61 (s, 3 H), 1.24 (s, 3 H), 0.95 (s, 3 H), 0.40 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 174.4, 148.2, 138.8, 138.0, 128.7, 126.7, 125.1, 73.4, 64.4, 51.4, 30.6, 28.9, 27.4, 4.0. HRMS (ESI-TOF): m/z [M + H]+ calcd for C16H26NO2Si+: 292.1733; found: 292.1731. 22a Zhu RY, Liu LY, Yu JQ. J. Am. Chem. Soc. 2017; 139: 12394 22b Zhu RY, Li ZQ, Park HS, Senanayake CH, Yu JQ. J. Am. Chem. Soc. 2018; 140: 3564 22c Smalley AP, Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 10632 Zusatzmaterial Zusatzmaterial Supporting Information