Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(04): 369-373
DOI: 10.1055/a-1982-5185
DOI: 10.1055/a-1982-5185
letter
Palladium-Catalyzed C(sp2)–H Silylation via a Native-Amine-Directed Strategy
This work was supported by the National Natural Science Foundation of China (NSFC, Grant No. 21772092).
Abstract
A palladium-catalyzed C(sp2)–H silylation of morpholinones to afford silyl morpholinones is reported. The native secondary amine, which is tolerated in the reaction, is able to promote the C–H activation and silylation of the aryl group. The substrates are monosilylated selectively and tolerate various functional groups. The resulting silyl morpholinone derivatives are potentially useful in pharmaceuticals and agrochemicals.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1982-5185.
- Supporting Information
Publication History
Received: 19 October 2022
Accepted after revision: 18 November 2022
Accepted Manuscript online:
18 November 2022
Article published online:
19 December 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Colvin EW. Silicon Reagents in Organic Synthesis . Academic Press; London: 1988
- 1b Rappoport Z, Apeloig Y. Chemistry of Organosilicon Compounds . Wiley-VCH; New York: 2001
- 1c Rochow EG. Silicon and Silicones . Springer; New York: 1987
- 1d Corey JY, Braddock-Wilking J. Chem. Rev. 1999; 99: 175
- 1e Mochida K, Shimizu M, Hiyama T. J. Am. Chem. Soc. 2009; 131: 8350
- 2a Liang Y, Zhang SG, Xi ZF. J. Am. Chem. Soc. 2011; 133: 9204
- 2b Cheng C, Hartwig JF. Science 2014; 343: 853
- 2c Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
- 2d Wu Z, Wu ZC, Sun XL, Qi WX, Zhang ZY, Zhang YH. Org. Lett. 2021; 23: 7161
- 2e Ji X, Wei F, Wan B, Cheng C, Zhang Y. Chem. Commun. 2020; 56: 7801
- 2f Yang C, Wang J, Li JH, Ma WC, An K, He W, Jiang C. Adv. Synth. Catal. 2018; 360: 3049
- 3a Mortensen M, Husmann R, Veri E, Bolm C. Chem. Soc. Rev. 2009; 38: 1002
- 3b Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388
- 3c Zhang M, Gao S, Tang J, Ling Chen L, Liu AH, Sheng SR, Zhang AQ. Chem. Commun. 2021; 57: 8250
- 3d Liu P, Hao N, Yang D, Wan LY, Wang TY, Zhang T, Zhou R, Cong XF, Kong J. Org. Chem. Front. 2021; 8: 2442
- 3e Zhou B, Lu AL, Zhang YH. Synlett 2019; 30: 685
- 3f Gu YT, Shen YY, Zarate C, Martin R. J. Am. Chem. Soc. 2019; 141: 127
- 4a Yang B, Yang W, Guo YH, You LJ, He C. Angew. Chem. Int. Ed. 2020; 59: 22217
- 4b Li W, Huang XL, You JS. Org. Lett. 2016; 18: 666
- 4c Kon K, Suzuki H, Takada K, Kohari Y, Namikoshi T, Watanabe S, Murata M. ChemCatChem 2016; 8: 2202
- 4d Kakiuchi F, Tsuchiya K, Matsumoto M, Mizushima E, Chatani N. J. Am. Chem. Soc. 2004; 126: 12792
- 4e Karmel C, Li BJ, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 1460
- 4f Kuninobu Y, Nakahara T, Takeshima H, Takai K. Org. Lett. 2013; 15: 426
- 4g Mita T, Michigami K, Sato Y. Chem. Asian J. 2013; 8: 2970
- 4h Su B, Lee T, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 18032
- 4i Simmons EM, Hartwig JF. Nature 2012; 483: 70
- 4j Tsukada N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 5022
- 4k Li B, Dixneuf PH. Chem. Soc. Rev. 2021; 50: 5062
- 4l Sarkar W, Mishra A, Bhowmik A, Deb I. Org. Lett. 2021; 23: 4521
- 4m Guo HF, Chen X, Zhao CL, He W. Chem. Commun. 2015; 51: 17410
- 4n Zhang QW, An K, Liu LC, Yue Y, He W. Angew. Chem. Int. Ed. 2015; 54: 6918
- 5 Kanyiva KS, Kuninobu Y, Kanai M. Org. Lett. 2014; 16: 1968
- 6a Pan JL, Li QZ, Zhang TY, Hou SH, Kang JC, Zhang SY. Chem. Commun. 2016; 52: 13151
- 6b Liu YJ, Liu YH, Zhang ZZ, Yan SY, Chen K, Shi BF. Angew. Chem. Int. Ed. 2016; 55: 13859
- 6c Deb A, Singh S, Seth K, Pimparkar S, Bhaskararao B, Guin S, Sunoj RB, Maiti D. ACS Catal. 2017; 7: 8171
- 6d Zhan BB, Fan J, Jin L, Shi BF. ACS Catal. 2019; 9: 3298
- 6e Hartwig JF. Acc. Chem. Res. 2012; 45: 864
- 6f Cheng C, Hartwig JF. Chem. Rev. 2015; 115: 8946
- 6g Xiao PH, Gao L, Song ZL. Chem. Eur. J. 2019; 25: 2407
- 6h Li JH, Jiang C. Org. Lett. 2021; 23: 5359
- 7 Chen CP, Guan MY, Zhang JY, Wen ZK, Zhao YS. Org. Lett. 2015; 17: 3646
- 8 Pan JL, Chen C, Ma ZG, Zhou J, Wang LR, Zhang SY. Org. Lett. 2017; 19: 5216
- 9 Li WG, Chen WQ, Zhou B, Xu YK, Deng GB, Liang Y, Yang Y. Org. Lett. 2019; 21: 2718
- 10 Wu YJ, Yao QJ, Chen HM, Liao G, Shi BF. Sci. China: Chem. 2020; 63: 875
- 11a Modak A, Patra T, Chowdhury R, Raul S, Maiti D. Organometallics 2017; 36: 2418
- 11b Maji A, Guin S, Feng S, Dahiya A, Singh VK, Liu P, Maiti D. Angew. Chem. Int. Ed. 2017; 56: 14903
- 12 Li JH, Ding MY, Jiang C. Org. Lett. 2021; 23: 9036
- 13a Reynolds T. Phytochemistry 2005; 66: 1399
- 13b Zhang Q, Tu G, Zhao Y, Cheng T. Tetrahedron 2002; 58: 6795
- 13c Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
- 13d Yang Y, Shi SL, Niu D, Liu P, Buchwald SL. Science 2015; 349: 62
- 13e Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
- 13f Chen FF, Zheng GW, Liu L, Li H, Chen Q, Li FL, Li CX, Xu JH. ACS Catal. 2018; 8: 2622
- 13g Dong L, Meng Q, Ramírez-Palacios C, Wijma HJ, Marrink SJ, Janssen DB. Catalysts 2020; 10: 1310
- 13h Yin Z, Zeng H, Wu J, Zheng S, Zhang G. ACS Catal. 2016; 6: 6546
- 14 He C, Whitehurst WG, Gaunt MJ. Chem 2019; 5: 1031
- 15a McNally A, Haffemayer B, Collins BS. L, Gaunt MJ. Nature 2014; 510: 129
- 15b Smalley AP, Cuthbertson JD, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 1412
- 15c Zakrzewski J, Smalley AP, Kabeshov MA, Gaunt MJ, Lapkin AA. Angew. Chem. Int. Ed. 2016; 55: 8878
- 16a Nappi M, He C, Whitehurst WG, Chappell BG. N, Gaunt MJ. Angew. Chem. Int. Ed. 2018; 57: 3178
- 16b Nappi M, Gaunt MJ. Organometallics 2019; 38: 143
- 17a Cabrera-Pardo JR, Trowbridge A, Nappi M, Ozaki K, Gaunt MJ. Angew. Chem. Int. Ed. 2017; 56: 11958
- 17b Hogg KF, Trowbridge A, Alvarez-Perez A, Gaunt MJ. Chem. Sci. 2017; 8: 8198
- 17c Png ZM, Cabrera-Pardo JR, Cadahía JP, Gaunt MJ. Chem. Sci. 2018; 9: 7628
- 17d Ho DK. H, Calleja J, Gaunt MJ. Synlett 2019; 30: 454
- 18 He C, Gaunt MJ. Angew. Chem. Int. Ed. 2015; 54: 15840
- 19 He C, Gaunt MJ. Chem. Sci. 2017; 8: 3586
- 20 Buettner CS, Willcox D, Chappell BG. N, Gaunt MJ. Chem. Sci. 2019; 10: 83
- 21 General Procedure for the Synthesis of 2a Substrate 1a (0.10 mmol), Pd(OAc)2 (0.01 mmol, 2.2 mg), CuBr2 (0.03 mmol, 6.7 mg), AgTFA (0.30 mmol, 66.0 mg), and (SiMe3)2 (0.30 mmol, 43.9 mg) were weighed into a 10 mL tube with a magnetic stir bar under air. Toluene (3.0 mL) was added, and the tube was sealed with a cap. Then the mixture was stirred at 90 °C for 12 h. Upon completion, the reaction mixture was cooled to room temperature and diluted with EtOAc, filtered through a plug of Celite, and the solvent was removed under vacuum. After purification by column chromatography (hexane–EtOAc = 10:1 as eluent), 2a was obtained as a white solid (18.9 mg, 65%). Analytical Data for Compound 2a White solid; mp 80.5 °C; Rf = 0.41 (hexane–EtOAc = 10:1). 1H NMR (500 MHz, CDCl3): δ = 7.71 (dd, J = 7.0, 1.4 Hz, 1 H), 7.34–7.30 (m, 1 H), 7.27–7.21 (m, 2 H), 3.76 (d, J = 11.6 Hz, 1 H), 3.73 (d, J = 11.5 Hz, 1 H), 1.61 (s, 3 H), 1.24 (s, 3 H), 0.95 (s, 3 H), 0.40 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 174.4, 148.2, 138.8, 138.0, 128.7, 126.7, 125.1, 73.4, 64.4, 51.4, 30.6, 28.9, 27.4, 4.0. HRMS (ESI-TOF): m/z [M + H]+ calcd for C16H26NO2Si+: 292.1733; found: 292.1731.