Synthesis 2023; 55(07): 1123-1129
DOI: 10.1055/a-1983-3890
paper

Samarium-Promoted Homocoupling of Benzaldehydes and In Situ Condensation with Esters Under the Catalysis of Cuprous Iodide

Hongping Chen
,
Bin Song
,
Mingzhong Mi
,
Yan Qi
,
Yongjun Liu
The project was sponsored by the Shandong Provincial Key Research and Development Program (SPKR&DP) (2019GGXI02036), and the Open Project of Faculty of Chemistry of Qingdao University of Science and Technology (QUSTHX201902).


Abstract

A novel C–H functionalization method was successfully explored by a reductive three molecule coupling of benzaldehydes and esters mediated by samarium and cuprous iodide; thus, the diarylmethanol skeletons were afforded readily via an in situ esterification in one-pot. Substrates including a variety of esters and different benzaldehydes were investigated, and the desired products were readily obtained in moderate to good yields under mild conditions.

Supporting Information



Publikationsverlauf

Eingereicht: 03. September 2022

Angenommen nach Revision: 21. November 2022

Accepted Manuscript online:
21. November 2022

Artikel online veröffentlicht:
14. Dezember 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
    • 1b Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
    • 1c Zheng Q, Liu C.-F, Chen J, Rao G.-W. Adv. Synth. Catal. 2020; 362: 1406
    • 1d Ali R, Siddiqui R. Adv. Synth. Catal. 2021; 363: 1290
    • 1e Meera G, Rohit KR, Treesa GS. S, Anilkumar G. Asian J. Org. Chem. 2020; 9: 144
    • 2a Liu B, Zhang Z.-Z, Li X, Shi B.-F. Org. Chem. Front. 2016; 3: 897
    • 2b Liao G, Li B, Chen H.-M, Yao Q.-J, Xia Y.-N, Luo J, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 17151
    • 2c Rouquet G, Chatani N. Chem. Sci. 2013; 4: 2201
    • 2d Liu Y.-Y, Huang B, Cao X.-J, Wan J.-P. ChemCatChem 2016; 8: 1470
    • 2e He Q, Yamaguchi T, Chatani N. Org. Lett. 2017; 19: 4544
    • 2f Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 2g Jana S, Empel C, Pei C, Nguyen TV, Koenigs RM. Adv. Synth. Catal. 2020; 362: 5721
    • 3a Lan J, Xie H, Lu X, Deng Y, Jiang H, Zeng W. Org. Lett. 2017; 19: 4279
    • 3b Wang C, Qin J, Shen X, Riedel R, Harms K, Meggers K. Angew. Chem. Int. Ed. 2016; 55: 685
    • 3c Li S.-S, Wang C.-Q, Lin H, Zhang X.-M, Dong L. Org. Lett. 2015; 17: 3018
    • 4a Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 4b Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 4c Tang K.-X, Wang C.-M, Gao T.-H, Chen L, Fan L, Sun L.-P. Adv. Synth. Catal. 2019; 361: 26
    • 4d Kern N, Plesniak MP, McDouall JJ. W, Procter D. J. Nat. Chem. 2017; 9: 1198
    • 4e Wang D.-Y, Guo S.-H, Pan G.-F, Zhu X.-Q, Gao Y.-R, Wang Y.-Q. Org. Lett. 2018; 20: 1794
    • 5a Ilies L, Zhou Y, Yang H, Matsubara T, Shang R, Nakamura E. ACS Catal. 2018; 8: 11478
    • 5b Zhou Y.-R, Yuan J.-J, Yang Q, Xiao Q, Peng Y.-Y. ChemCatChem 2016; 8: 1
    • 5c Du C, Li P.-X, Zhu X.-J, Suo J.-F, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2016; 55: 1
    • 6a Wang X, Xie G, Zhao Y, Zheng K, Fang Y, Wang X. Tetrahedron Lett. 2021; 72: 153069
    • 6b Szostak M, Spain M, Procter DJ. Chem. Soc. Rev. 2013; 42: 9155
    • 6c Edelmann FT. Coord. Chem. Rev. 2018; 370: 129
    • 6d Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
    • 6e Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
    • 6f Bousrez G, Jaroschik F. Eur. J. Org. Chem. 2022; 1.
    • 7a Banik BK. Eur. J. Org. Chem. 2002; 2431
    • 7b Anthore-Dalion L, Benischke AD, Wei B, Berionni G, Knochel P. Angew. Chem. Int. Ed. 2019; 58: 4046
    • 7c Ye Y, Zhou Q, Zheng R, Jiang H, Chen R, Zhang Y. Appl. Organomet. Chem. 2011; 25: 331
    • 8a Liu Y, Xiao S.-H, Qi Y, Du F. Chem. Asian J. 2017; 12: 673
    • 8b Xiao S, Liu C, Song B, Wang L, Qi Y, Liu Y. Chem. Commun. 2021; 57: 6169
    • 8c Song B, Zhang D.-M, Xiao S.-H, Liu C, Chen H.-P, Qi Y, Liu Y.-J. J. Org. Chem. 2021; 86: 9854
    • 8d Liu Y.-J, Zhang D.-M, Xiao S.-H, Qi Y, Liu S.-F. Asian J. Org. Chem. 2019; 8: 858
    • 8e Liu Y.-J, Tian G, Li J.-J, Qi Y, Wen Y, Du F. J. Org. Chem. 2017; 82: 5932
    • 9a Shah S, Das BG, Singh VK. Tetrahedron 2021; 93: 132238
    • 9b Gómez JE, Cristòfol À, Kleij AW. Angew. Chem. Int. Ed. 2019; 58: 3903
    • 9c Tekale S.-U, Jadhav VB, Pagore VP, Kauthale SS, Gaikwad DD, Pawar RP. Mini-Rev. Org. Chem. 2013; 10: 281
    • 10a Wen X, Di Paola F, Chopra N. J. Addict. Med. 2019; 13: 412
    • 10b Kirkpatrick D, Momot M, Anthony C. Sep. Sci. Plus 2020; 3: 267
    • 10c Zhu N, Su M, Wan W.-M, Li Y, Bao H. Org. Lett. 2020; 22: 991
    • 10d Misawa T, Aoyama H, Furuyama T, Dodo K, Sagawa M, Miyachi H, Kizaki M, Hashimoto Y. Chem. Pharm. Bull. 2008; 56: 1490
    • 10e Kawabata K, Tanaka T, Yamamoto T, Ushida J, Hara A, Murakami A, Koshimizu K, Ohigashi H, Stoner GD, Mori H. Jpn. J. Cancer. Res. 2000; 91: 148
    • 10f Orita S, Hirose M, Takahashi S, Imaida K, Ito N, Shudo K, Ohigashi H, Murakami A, Shirai T. Toxicol. Pathol. 2004; 32: 250
    • 10g Naoaki T, Takahisa K, Shogo Y, Takashi Y, Toshihiro T, Yasuyoshi U, Hans P, Robert D, Haleh A, Ole LL. PCT Int. Appl WO 2004014821, 2004
    • 10h Rene AP, Gaston VM, Kumar SA, Anne ML. PCT Int. Appl WO 2002024683, 2002
    • 10i Wright SW, Harris RR, Collins RJ, Corbett RL, Green AM, Wadman EA, Batt DG. J. Med. Chem. 1992; 35: 3148
    • 10j Cheng Q, Chen Q, Xu J.-H, Yu H.-L. Mol. Catal. 2018; 455: 224
    • 11a Choquette KA, Sadasivam DV, Flowers RA. II. J. Am. Chem. Soc. 2011; 133: 10655
    • 11b Kimberly AC, Dhandapani VS, Robert AF. II. J. Am. Chem. Soc. 2010; 132: 17396
    • 11c Sadasivam DV, Antharjanam PK. S, Prasad E, Flowers RA. II. J. Am. Chem. Soc. 2008; 130: 7228
    • 11d Shotwell JB, Sealy JM, Flowers RA. II. J. Org. Chem. 1999; 64: 5251
    • 11e Farran H, Hoz S. Org. Lett. 2008; 10: 865
    • 11f Halder S, Hoz S. J. Org. Chem. 2014; 79: 2682
  • 12 CCDC 2061732 (4l) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 13a Maity S, Flowers RA. J. Am. Chem. Soc. 2019; 141: 3207
    • 13b Kern N, Plesniak MP, McDouall JJ. W, Procter DJ. Nat. Chem. 2017; 9: 1198
    • 13c Just-Baringo X, Procter DJ. Acc. Chem. Res. 2015; 48: 1263
    • 13d Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
    • 14a Liu Y.-H, Yan Y.-D, Zhang M.-L, Ji D.-B, Li P, Yin T.-Q, Wang P, Xue Y, Jing X.-Y, Han W, Qiu M, Hu D. J. Alloys Compd. 2019; 772: 978
    • 14b Totleben MJ, Curran DP, Wipf P. J. Org. Chem. 1992; 57: 1740
    • 14c Curran D, Totleben MJ. J. Am. Chem. Soc. 1992; 114: 6050
    • 14d Wipf P, Venkatraman S. J. Org. Chem. 1993; 58: 3455
    • 15a Shiue J.-S, Lin M.-H, Fang J.-M. J. Org. Chem. 1997; 62: 4643
    • 15b Shiue J.-S, Lin C.-C, Fang J.-M. Tetrahedron Lett. 1993; 34: 335
    • 16a Khuong KS. J. Chem. Educ. 2017; 94: 534
    • 16b Reddy GR, Chennakesavulu K. J. Mol. Struct. 2014; 1075: 406