RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2023; 55(07): 1123-1129
DOI: 10.1055/a-1983-3890
DOI: 10.1055/a-1983-3890
paper
Samarium-Promoted Homocoupling of Benzaldehydes and In Situ Condensation with Esters Under the Catalysis of Cuprous Iodide
The project was sponsored by the Shandong Provincial Key Research and Development Program (SPKR&DP) (2019GGXI02036), and the Open Project of Faculty of Chemistry of Qingdao University of Science and Technology (QUSTHX201902).
Abstract
A novel C–H functionalization method was successfully explored by a reductive three molecule coupling of benzaldehydes and esters mediated by samarium and cuprous iodide; thus, the diarylmethanol skeletons were afforded readily via an in situ esterification in one-pot. Substrates including a variety of esters and different benzaldehydes were investigated, and the desired products were readily obtained in moderate to good yields under mild conditions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1983-3890.
- Supporting Information
Publikationsverlauf
Eingereicht: 03. September 2022
Angenommen nach Revision: 21. November 2022
Accepted Manuscript online:
21. November 2022
Artikel online veröffentlicht:
14. Dezember 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
- 1b Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
- 1c Zheng Q, Liu C.-F, Chen J, Rao G.-W. Adv. Synth. Catal. 2020; 362: 1406
- 1d Ali R, Siddiqui R. Adv. Synth. Catal. 2021; 363: 1290
- 1e Meera G, Rohit KR, Treesa GS. S, Anilkumar G. Asian J. Org. Chem. 2020; 9: 144
- 2a Liu B, Zhang Z.-Z, Li X, Shi B.-F. Org. Chem. Front. 2016; 3: 897
- 2b Liao G, Li B, Chen H.-M, Yao Q.-J, Xia Y.-N, Luo J, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 17151
- 2c Rouquet G, Chatani N. Chem. Sci. 2013; 4: 2201
- 2d Liu Y.-Y, Huang B, Cao X.-J, Wan J.-P. ChemCatChem 2016; 8: 1470
- 2e He Q, Yamaguchi T, Chatani N. Org. Lett. 2017; 19: 4544
- 2f Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 2g Jana S, Empel C, Pei C, Nguyen TV, Koenigs RM. Adv. Synth. Catal. 2020; 362: 5721
- 3a Lan J, Xie H, Lu X, Deng Y, Jiang H, Zeng W. Org. Lett. 2017; 19: 4279
- 3b Wang C, Qin J, Shen X, Riedel R, Harms K, Meggers K. Angew. Chem. Int. Ed. 2016; 55: 685
- 3c Li S.-S, Wang C.-Q, Lin H, Zhang X.-M, Dong L. Org. Lett. 2015; 17: 3018
- 4a Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 4b Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
- 4c Tang K.-X, Wang C.-M, Gao T.-H, Chen L, Fan L, Sun L.-P. Adv. Synth. Catal. 2019; 361: 26
- 4d Kern N, Plesniak MP, McDouall JJ. W, Procter D. J. Nat. Chem. 2017; 9: 1198
- 4e Wang D.-Y, Guo S.-H, Pan G.-F, Zhu X.-Q, Gao Y.-R, Wang Y.-Q. Org. Lett. 2018; 20: 1794
- 5a Ilies L, Zhou Y, Yang H, Matsubara T, Shang R, Nakamura E. ACS Catal. 2018; 8: 11478
- 5b Zhou Y.-R, Yuan J.-J, Yang Q, Xiao Q, Peng Y.-Y. ChemCatChem 2016; 8: 1
- 5c Du C, Li P.-X, Zhu X.-J, Suo J.-F, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2016; 55: 1
- 6a Wang X, Xie G, Zhao Y, Zheng K, Fang Y, Wang X. Tetrahedron Lett. 2021; 72: 153069
- 6b Szostak M, Spain M, Procter DJ. Chem. Soc. Rev. 2013; 42: 9155
- 6c Edelmann FT. Coord. Chem. Rev. 2018; 370: 129
- 6d Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
- 6e Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
- 6f Bousrez G, Jaroschik F. Eur. J. Org. Chem. 2022; 1.
- 7a Banik BK. Eur. J. Org. Chem. 2002; 2431
- 7b Anthore-Dalion L, Benischke AD, Wei B, Berionni G, Knochel P. Angew. Chem. Int. Ed. 2019; 58: 4046
- 7c Ye Y, Zhou Q, Zheng R, Jiang H, Chen R, Zhang Y. Appl. Organomet. Chem. 2011; 25: 331
- 8a Liu Y, Xiao S.-H, Qi Y, Du F. Chem. Asian J. 2017; 12: 673
- 8b Xiao S, Liu C, Song B, Wang L, Qi Y, Liu Y. Chem. Commun. 2021; 57: 6169
- 8c Song B, Zhang D.-M, Xiao S.-H, Liu C, Chen H.-P, Qi Y, Liu Y.-J. J. Org. Chem. 2021; 86: 9854
- 8d Liu Y.-J, Zhang D.-M, Xiao S.-H, Qi Y, Liu S.-F. Asian J. Org. Chem. 2019; 8: 858
- 8e Liu Y.-J, Tian G, Li J.-J, Qi Y, Wen Y, Du F. J. Org. Chem. 2017; 82: 5932
- 9a Shah S, Das BG, Singh VK. Tetrahedron 2021; 93: 132238
- 9b Gómez JE, Cristòfol À, Kleij AW. Angew. Chem. Int. Ed. 2019; 58: 3903
- 9c Tekale S.-U, Jadhav VB, Pagore VP, Kauthale SS, Gaikwad DD, Pawar RP. Mini-Rev. Org. Chem. 2013; 10: 281
- 10a Wen X, Di Paola F, Chopra N. J. Addict. Med. 2019; 13: 412
- 10b Kirkpatrick D, Momot M, Anthony C. Sep. Sci. Plus 2020; 3: 267
- 10c Zhu N, Su M, Wan W.-M, Li Y, Bao H. Org. Lett. 2020; 22: 991
- 10d Misawa T, Aoyama H, Furuyama T, Dodo K, Sagawa M, Miyachi H, Kizaki M, Hashimoto Y. Chem. Pharm. Bull. 2008; 56: 1490
- 10e Kawabata K, Tanaka T, Yamamoto T, Ushida J, Hara A, Murakami A, Koshimizu K, Ohigashi H, Stoner GD, Mori H. Jpn. J. Cancer. Res. 2000; 91: 148
- 10f Orita S, Hirose M, Takahashi S, Imaida K, Ito N, Shudo K, Ohigashi H, Murakami A, Shirai T. Toxicol. Pathol. 2004; 32: 250
- 10g Naoaki T, Takahisa K, Shogo Y, Takashi Y, Toshihiro T, Yasuyoshi U, Hans P, Robert D, Haleh A, Ole LL. PCT Int. Appl WO 2004014821, 2004
- 10h Rene AP, Gaston VM, Kumar SA, Anne ML. PCT Int. Appl WO 2002024683, 2002
- 10i Wright SW, Harris RR, Collins RJ, Corbett RL, Green AM, Wadman EA, Batt DG. J. Med. Chem. 1992; 35: 3148
- 10j Cheng Q, Chen Q, Xu J.-H, Yu H.-L. Mol. Catal. 2018; 455: 224
- 11a Choquette KA, Sadasivam DV, Flowers RA. II. J. Am. Chem. Soc. 2011; 133: 10655
- 11b Kimberly AC, Dhandapani VS, Robert AF. II. J. Am. Chem. Soc. 2010; 132: 17396
- 11c Sadasivam DV, Antharjanam PK. S, Prasad E, Flowers RA. II. J. Am. Chem. Soc. 2008; 130: 7228
- 11d Shotwell JB, Sealy JM, Flowers RA. II. J. Org. Chem. 1999; 64: 5251
- 11e Farran H, Hoz S. Org. Lett. 2008; 10: 865
- 11f Halder S, Hoz S. J. Org. Chem. 2014; 79: 2682
- 12 CCDC 2061732 (4l) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 13a Maity S, Flowers RA. J. Am. Chem. Soc. 2019; 141: 3207
- 13b Kern N, Plesniak MP, McDouall JJ. W, Procter DJ. Nat. Chem. 2017; 9: 1198
- 13c Just-Baringo X, Procter DJ. Acc. Chem. Res. 2015; 48: 1263
- 13d Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
- 14a Liu Y.-H, Yan Y.-D, Zhang M.-L, Ji D.-B, Li P, Yin T.-Q, Wang P, Xue Y, Jing X.-Y, Han W, Qiu M, Hu D. J. Alloys Compd. 2019; 772: 978
- 14b Totleben MJ, Curran DP, Wipf P. J. Org. Chem. 1992; 57: 1740
- 14c Curran D, Totleben MJ. J. Am. Chem. Soc. 1992; 114: 6050
- 14d Wipf P, Venkatraman S. J. Org. Chem. 1993; 58: 3455
- 15a Shiue J.-S, Lin M.-H, Fang J.-M. J. Org. Chem. 1997; 62: 4643
- 15b Shiue J.-S, Lin C.-C, Fang J.-M. Tetrahedron Lett. 1993; 34: 335