Subscribe to RSS
DOI: 10.1055/a-1992-7066
Electrochemical Benzylic C(sp3)–H Amidation via Ritter-Type Reaction in the Absence of External Mediator and Oxidant
This work was supported by the National Natural Science Foundation of China (Project 21672104, 21502097) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
This work is dedicated to Professor Guo-Qiang Lin on his 80th birthday.
Abstract
A straightforward method involving electrochemical Ritter-type amidation of alkylarenes in the absence of external mediator and oxidant is described. This direct benzylic C(sp3)–H amidation utilizes cheap CH3CN or other nitriles as the nitrogen source and trace amount of H2O in the solvent as the oxygen and hydrogen source. A wide range of alkylarenes were found to be compatible, providing a variety of N-benzyl-substituted amides in moderate to good yields.
Key words
electrochemical oxidation - benzylic C(sp3)–H amidation - Ritter-type reaction - external mediator free - oxidant free - N-benzylamidesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1992-7066.
- Supporting Information
Publication History
Received: 16 November 2022
Accepted after revision: 05 December 2022
Accepted Manuscript online:
05 December 2022
Article published online:
03 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Wieland T, Bodanszky M. The World of Peptides: A Brief History of Peptide Chemistry . Springer-Verlag; Berlin: 1991
- 2a Pinto DJ. P, Orwat MJ, Koch S, Rossi KA, Alexander RS, Smallwood A, Wong PC, Rendina AR, Luettgen JM, Knabb RM, He K, Xin B, Wexler RR, Lam PY. S. J. Med. Chem. 2007; 50: 5339
- 2b Ruchelman AL, Man H.-W, Zhang W, Chen R, Capone L, Kang J, Parton A, Corral L, Schafer PH, Babusis D, Moghaddam MF, Tang Y, Shirley MA, Muller GW. Bioorg. Med. Chem. Lett. 2013; 23: 360
- 3a Yang Y.-C, Lee S.-G, Lee H.-K, Kim M.-K, Lee S.-H, Lee H.-S. J. Agric. Food Chem. 2002; 50: 3765
- 3b Zhang Y, Li Y, Li H, Shang J, Li Z, Wang B. Chin. Chem. Lett. 2022; 33: 501
- 4 Xu Z, Baek K.-H, Kim HN, Cui J, Qian X, Spring DR, Shin I, Yoon J. J. Am. Chem. Soc. 2010; 132: 601
- 5a Zweifel T, Naubron J.-V, Grützmacher H. Angew. Chem. Int. Ed. 2009; 48: 559
- 5b Shimizu K.-i, Ohshima K, Satsuma A. Chem. Eur. J. 2009; 15: 9977
- 5c Zultanski SL, Zhao J, Stahl SS. J. Am. Chem. Soc. 2016; 138: 6416
- 6a Ghosh SC, Ngiam JS. Y, Seayad AM, Tuan DT, Chai CL. L, Chen A. J. Org. Chem. 2012; 77: 8007
- 6b Zhu M, Fujita K.-i, Yamaguchi R. J. Org. Chem. 2012; 77: 9102
- 7a Tang C, Jiao N. Angew. Chem. Int. Ed. 2014; 53: 6528
- 7b Zhu C, Wei W, Du P, Wan X. Tetrahedron 2014; 70: 9615
- 8a Cho SH, Yoo EJ, Bae I, Chang S. J. Am. Chem. Soc. 2005; 127: 16046
- 8b Cho SH, Chang S. Angew. Chem. Int. Ed. 2007; 46: 1897
- 9 Lee SI, Son SU, Chung YK. Chem. Commun. 2002; 38: 1310
- 10a Thu H.-Y, Yu W.-Y, Che C.-M. J. Am. Chem. Soc. 2006; 128: 9048
- 10b Iglesias Á, Álvarez R, de Lera ÁR, Muñiz K. Angew. Chem. Int. Ed. 2012; 51: 2225
- 10c Kang T, Kim Y, Lee D, Wang Z, Chang S. J. Am. Chem. Soc. 2014; 136: 4141
- 10d Xiao X, Hou C, Zhang Z, Ke Z, Lan J, Jiang H, Zeng W. Angew. Chem. Int. Ed. 2016; 55: 11897
- 10e Jin L, Zeng X, Li S, Hong X, Qiu G, Liu P. Chem. Commun. 2017; 53: 3986
- 10f Barsu N, Rahman MA, Sen M, Sundararaju B. Chem. Eur. J. 2016; 22: 9135
- 10g Tan PW, Mak AM, Sullivan MB, Dixon DJ, Seayad J. Angew. Chem. Int. Ed. 2017; 56: 16550
- 10h Antien K, Geraci A, Parmentier M, Baudoin O. Angew. Chem. Int. Ed. 2021; 60: 22948
- 11a Zhang Y, Fu H, Jiang Y, Zhao Y. Org. Lett. 2007; 9: 3813
- 11b Wang Z, Zhang Y, Fu H, Jiang Y, Zhao Y. Org. Lett. 2008; 10: 1863
- 12 Zhu C, Liang Y, Hong X, Sun H, Sun W.-Y, Houk KN, Shi Z. J. Am. Chem. Soc. 2015; 137: 7564
- 13a Wang Q, Ni S, Yu L, Pan Y, Wang Y. ACS Catal. 2022; 12: 11071
- 13b Wang Q, Ni S, Wang X, Wang Y, Pan Y. Sci. China Chem. 2022; 65: 678
- 14 Ritter JJ, Kalish J. J. Am. Chem. Soc. 1948; 70: 4048
- 15 Michaudel Q, Thevenet D, Baran PS. J. Am. Chem. Soc. 2012; 134: 2547
- 16 Li G.-X, Morales-Rivera CA, Gao F, Wang Y, He G, Liu P, Chen G. Chem. Sci. 2017; 8: 7180
- 17 Tang S, Liu Y, Lei A. Chem 2018; 4: 27
- 18a Wu J, Zhou Y, Zhou Y, Chiang C.-W, Lei A. ACS Catal. 2017; 7: 8320
- 18b Hou Z.-W, Liu D.-J, Xiong P, Lai X.-L, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2021; 60: 2943
- 18c Ruan Z, Huang Z, Xu Z, Zeng S, Feng P, Sun P.-H. Sci. China Chem. 2021; 64: 800
- 18d He J.-Y, Qian W.-F, Wang Y.-Z, Yao C, Wang N, Liu H, Zhong B, Zhu C, Xu H. Green Chem. 2022; 24: 2483
- 18e Cheng X, Lei A, Mei T.-S, Xu H.-C, Xu K, Zeng C. CCS Chem. 2022; 4: 1120
- 18f Meng Z, Feng C, Xu K. Chin. J. Org. Chem. 2021; 41: 2535
- 19 Shen T, Lambert TH. J. Am. Chem. Soc. 2021; 143: 8597
- 20 Zhang L, Fu Y, Shen Y, Liu C, Sun M, Cheng R, Zhu W, Qian X, Ma Y, Ye J. Nat. Commun. 2022; 13: 4138
- 21a Zhang X, Cui T, Zhao X, Liu P, Sun P. Angew. Chem. Int. Ed. 2020; 59: 3465
- 21b Zhan Y, Li Y, Tong J, Liu P, Sun P. Eur. J. Org. Chem. 2021; 2193
- 21c Cui T, Zhan Y, Dai C, Lin J, Liu P, Sun P. J. Org. Chem. 2021; 86: 15897
- 21d Cui T, Zhang X, Lin J, Zhu Z, Liu P, Sun P. Synlett 2021; 32: 267
- 21e Li H, Tong J, Zhu Y, Jiang C, Liu P, Sun P. Green Chem. 2022; 24: 8406
- 22 Kolesnikov PN, Usanov DL, Muratov KM, Chusov D. Org. Lett. 2017; 19: 5657
For selected examples, see:
For partial examples and reviews on electrochemical C(sp3)–H functionalization, see: