Diabetologie und Stoffwechsel 2023; 18(S 02): 270-304
DOI: 10.1055/a-1997-7924
DDG-Praxisempfehlung

Empfehlungen zur Ernährung von Personen mit Typ-2-Diabetes mellitus

Thomas Skurk
1   ZIEL- Institute for Food & Health, Technische Universität München, Freising, Deutschland
,
Anja Bosy-Westphal
2   Institut für Humanernährung, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
,
Arthur Grünerbel
3   Diabeteszentrum München Süd, München, Deutschland
,
Stefan Kabisch
4   Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke, Potsdam, Deutschland
5   Deutsches Zentrum für Diabetesforschung (DZD), München, Deutschland
,
Winfried Keuthage
6   Schwerpunktpraxis für Diabetes und Ernährungsmedizin, Münster, Deutschland
,
Peter Kronsbein
7   Fachbereich Oecotrophologie, Hochschule Niederrhein, Campus Mönchengladbach, Mönchengladbach, Deutschland
,
Karsten Müssig
8   Klinik für Innere Medizin, Gastroenterologie und Diabetologie, Niels-Stensen-Kliniken, Franziskus-Hospital Harderberg, Georgsmarienhütte, Deutschland
,
Helmut Nussbaumer
9   Diabeteszentrum Burghausen, Burghausen, Deutschland
,
Andreas F. H. Pfeiffer
10   Abt. Endokrinologie, Diabetes und Ernährungsmedizin, Charité Universitätsmedizin Berlin, Berlin, Deutschland
,
Marie-Christine Simon
11   Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Deutschland
,
Astrid Tombek
12   Diabetes-Klinik Bad Mergentheim, Bad Mergentheim, Deutschland
,
Katharina S. Weber
13   Institut für Epidemiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
,
Diana Rubin
14   Vivantes Klinikum Spandau, Berlin, Deutschland
15   Vivantes Humboldt Klinikum, Berlin, Deutschland
,
für den Ausschuss Ernährung der DDG › Author Affiliations
Aktualisierungshinweis

Die DDG-Praxisempfehlungen werden regelmäßig zur zweiten Jahreshälfte aktualisiert. Bitte stellen Sie sicher, dass Sie jeweils die neueste Version lesen und zitieren.

Inhaltliche Neuerungen Gegenüber der Vorjahresfassung

Neuerung 1: Hinweis auf die noch unzureichende Datenlage bezüglich der Neueinteilung der Diabestestypen hinsichtlich der Ernährung in der „Präambel“

Begründung: aktualisierte Neueinteilung der Diabetestypen notwendig

Neuerung 2: Optionales Angebot verschiedener Gewichtsreduktionsmethoden als möglich Strategie zur Steigerung der Compliance

Ggf. stützende Quellenangabe: [395]

Begründung: neue Studie

Neuerung 3: „Empfehlungen zum Körpgergewicht“. Eine einjährige Lebensstilintervention mit Kombination aus initialer Mahlzeitenersatzmethode (VLCD) und anschließender Mischkost führt zu einer nachhaltigen Remission

Begründung: publizierte Daten

Ggf. stützende Quellenangabe: [13]

Neuerung 4: Hinweis auf Vorteile bei Körpergewicht, Körperfettanteil, Gesamtsterblichkeit u. a. durch den Ersatz von zuckergesüßten Getränken durch nicht-nutritiv gesüßte Alternativen bzw. Wasser

Begründung: neue Daten

Ggf. stützende Quellenangabe: [210] [217]

Neuerung 5: Fermentierte Lebensmittel zur unterstützenden Therapie der Glykämie

Begründung: aktuelle Studien

Ggf. stützende Quellenangabe: [316]



Publication History

Article published online:
30 October 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Beck J, Greenwood DA, Blanton L. et al. 2017 National Standards for Diabetes Self-Management Education and Support. Diabetes Care 2017; 40: 1409-1419
  • 2 Evert AB, Dennison M, Gardner CD. et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019; 42: 731-754
  • 3 Ausschuss Ernährung der Deutschen Diabetes Gesellschaft (DDG). Stellungnahme zu Evert AB et al. Consensus Report: Nutrition Therapy for Adults with Diabetes or Prediabetes. Diabetes Care 2019; 42: 731-754 Im Internet (Stand): https://www.deutsche-diabetes-gesellschaft.de/politik/stellungnahmen/stellungnahmedes-ausschuss-ernaehrung-der-ddg-zum-consensusreport-nutrition-the-rapy-for-adults-with-diabetes-or-prediabetes
  • 4 DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992; 15: 318-368
  • 5 DeFronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care 2013; 36 (Suppl. 02) S127-S138
  • 6 Lencioni C, Lupi R, Del Prato S. Beta-cell failure in type 2 diabetes mellitus. Curr Diab Rep 2008; 8: 179-184
  • 7 [Anonymous]. U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group. Diabetes 1995; 44: 1249-1258
  • 8 Zaharia OP, Strassburger K, Strom A. et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol 2019; 7: 684-694
  • 9 Kodama S, Horikawa C, Fujihara K. et al. Quantitative relationship between body weight gain in adulthood and incident type 2 diabetes: a meta-analysis. Obes Rev 2014; 15: 202-214
  • 10 Wing RR, Lang W, Wadden TA. et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 2011; 34: 1481-1486
  • 11 Steven S, Hollingsworth KG, Al-Mrabeh A. et al. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes Care 2016; 39: 808-815
  • 12 Jazet IM, Pijl H, Frölich M. et al. Factors predicting the blood glucose lowering effect of a 30-day very low calorie diet in obese Type 2 diabetic patients. Diabet Med 2005; 22: 52-55
  • 13 Lean MEJ, Leslie WS, Barnes AC. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, clusterrandomised trial. Lancet 2018; 391: 541-551
  • 14 Bangalore S, Fayyad R, DeMicco DA. et al. Body Weight Variability and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus. Circ Cardiovasc Qual Outcomes 2018; 11: e004724
  • 15 Yeboah P, Hsu FC, Bertoni AG. et al. Body Mass Index, Change in Weight, Body Weight Variability and Outcomes in Type 2 Diabetes Mellitus (from the ACCORD Trial). Am J Cardiol 2019; 123: 576-581
  • 16 Pagidipati NJ, Zheng Y, Green JB. et al. Association of obesity with cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease: Insights from TECOS. Am Heart J 2020; 219: 47-57
  • 17 Bodegard J, Sundström J, Svennblad B. et al. Changes in body mass index following newly diagnosed type 2 diabetes and risk of cardiovascular mortality: a cohort study of 8486 primary-care patients. Diabetes Metab 2013; 39: 306-313
  • 18 Weinheimer EM, Sands LP, Campbell WW. A systematic review of the separate and combined effects of energy restriction and exercise on fatfree mass in middle-aged and older adults: implications for sarcopenic obesity. Nutr Rev 2010; 68: 375-388
  • 19 Zaccardi F, Dhalwani NN, Papamargaritis D. et al. Nonlinear association of BMI with all-cause and cardiovascular mortality in type 2 diabetes mellitus: a systematic review and meta-analysis of 414587 participants in prospective studies. Diabetologia 2017; 60: 240-248
  • 20 Salehidoost R, Mansouri A, Amini M. et al. Body mass index and the all-cause mortality rate in patients with type 2 diabetes mellitus. Acta Diabetol 2018; 55: 569-577
  • 21 Hainer V, Aldhoon-Hainerová I. Obesity paradox does exist. Diabetes Care 2013; 36 (Suppl. 02) S276-S281
  • 22 Murphy RA, Reinders I, Garcia ME. et al. Adipose tissue, muscle, and function: potential mediators of associations between body weight and mortality in older adults with type 2 diabetes. Diabetes Care 2014; 37: 3213-3219
  • 23 Bales CW, Porter Starr KN. Obesity Interventions for Older Adults: Diet as a Determinant of Physical Function. Adv Nutr 2018; 9: 151-159
  • 24 Uusitupa M, Khan TA, Viguiliouk E. et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019; 11: 2611
  • 25 Raben A, Vestentoft PS, Brand-Miller J. et al. The PREVIEW intervention study: Results from a 3-year randomized 2 × 2 factorial multinational trial investigating the role of protein, glycaemic index and physical activity for prevention of type 2 diabetes. Diabetes Obes Metab 2021; 23: 324-337
  • 26 Gregg EW, Chen H, Wagenknecht LE. et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA 2012; 308: 2489-2496
  • 27 Anderson JW, Konz EC, Frederich RC. et al. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr 2001; 74: 579-584
  • 28 Bundesgesundheitsministerium 2015. Telemedizin. Im Internet (Stand: 09.04.2021): https://www.bundesgesundheitsministerium.de/service/begriffe-von-a-z/t/telemedizin.html
  • 29 Su D, McBride C, Zhou J. et al. Does nutritional counseling in telemedicine improve treatment outcomes for diabetes? A systematic review and meta-analysis of results from 92 studies. J Telemed Telecare 2016; 22: 333-347
  • 30 Kempf K, Altpeter B, Berger J. et al. Efficacy of the Telemedical Lifestyle intervention Program TeLiPro in Advanced Stages of Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care 2017; 40: 863-871
  • 31 Colquitt JL, Pickett K, Loveman E. et al. Surgery for weight loss in adults. Cochrane Database Syst Rev 2014; 8: CD003641
  • 32 Patel KV, Bahnson JL, Gaussoin SA. et al. Association of Baseline and Longitudinal Changes in Body Composition Measures With Risk of Heart Failure and Myocardial Infarction in Type 2 Diabetes: Findings From the Look AHEAD Trial. Circulation 2020; 142: 2420-2430
  • 33 Franz MJ, Boucher JL, Rutten-Ramos S. et al. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet 2015; 115: 1447-1463
  • 34 Murgatroyd PR, Goldberg GR, Leahy FE. et al. Effects of inactivity and diet composition on human energy balance. Int J Obes Relat Metab Disord 1999; 23: 1269-1275
  • 35 Stubbs RJ, Sepp A, Hughes DA. et al. The effect of graded levels of exercise on energy intake and balance in free-living women. Int J Obes Relat Metab Disord 2002; 26: 866-869
  • 36 Granados K, Stephens BR, Malin SK. et al. Appetite regulation in response to sitting and energy imbalance. Appl Physiol Nutr Metab 2012; 37: 323-333
  • 37 Hägele FA, Büsing F, Nas A. et al. Appetite Control Is Improved by Acute Increases in Energy Turnover at Different Levels of Energy Balance. J Clin Endocrinol Metab 2019; 104: 4481-4491
  • 38 Douglas JA, King JA, Clayton DJ. et al. Acute effects of exercise on appetite, ad libitum energy intake and appetite-regulatory hormones in lean and overweight/obese men and women. Int J Obes (Lond) 2017; 41: 1737-1744
  • 39 Savikj M, Zierath JR. Train like an athlete: applying exercise interventions to manage type 2 diabetes. Diabetologia 2020; 63: 1491-1499
  • 40 Büsing F, Hägele FA, Nas A. et al. Impact of energy turnover on the regulation of glucose homeostasis in healthy subjects. Nutr Diabetes 2019; 9: 22
  • 41 Larsen JJ, Dela F, Kjaer M. et al. The effect of moderate exercise on postprandial glucose homeostasis in NIDDM patients. Diabetologia 1997; 40: 447-453
  • 42 Heden TD, Winn NC, Mari A. et al. Postdinner resistance exercise improves postprandial risk factors more effectively than predinner resistance exercise in patients with type 2 diabetes. J Appl Physiol (1985) 2015; 118: 624-634
  • 43 Reynolds AN, Mann JI, Williams S. et al. Advice to walk after meals is more effective for lowering postprandial glycaemia in type 2 diabetes mellitus than advice that does not specify timing: a randomised crossover study. Diabetologia 2016; 59: 2572-2578
  • 44 Gaudet-Savard T, Ferland A, Broderick TL. et al. Safety and magnitude of changes in blood glucose levels following exercise performed in the fasted and the postprandial state in men with type 2 diabetes. Eur J Cardiovasc Prev Rehabil 2007; 14: 831-836
  • 45 DiPietro L, Gribok A, Stevens MS. et al. Three 15-min bouts of moderate postmeal walking significantly improves 24-h glycemic control in older people at risk for impaired glucose tolerance. Diabetes Care 2013; 36: 3262-3268
  • 46 Seidelmann SB, Claggett B, Cheng S. et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health 2018; 3: e419-e428
  • 47 Davies MJ, D’Alessio DA, Fradkin J. et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018; 41: 2669-2701
  • 48 Schwingshackl L, Chaimani A, Hoffmann G. et al. A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur J Epidemiol 2018; 33: 157-170
  • 49 Schwingshackl L, Hoffmann G, Iqbal K. et al. Food groups and intermediate disease markers: a systematic review and network meta-analysis of randomized trials. Am J Clin Nutr 2018; 108: 576-586
  • 50 Neuenschwander M, Ballon A, Weber KS. et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ 2019; 366: l2368
  • 51 Ge L, Sadeghirad B, Ball GDC. et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. BMJ 2020; 369: m696
  • 52 Goldenberg JZ, Day A, Brinkworth GD. et al. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ 2021; 372: m4743
  • 53 Schwingshackl L, Nitschke K, Zähringer J. et al. Impact of Meal Frequency on Anthropometric Outcomes: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2020; 11: 1108-1122
  • 54 Della Corte KW, Perrar I, Penczynski KJ. et al. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-Analysis of Intervention Studies. Nutrients 2018; 10: 606
  • 55 Schwingshackl L, Chaimani A, Schwedhelm C. et al. Comparative effects of different dietary approaches on blood pressure in hypertensive and pre-hypertensive patients: A systematic review and network meta-analysis. Crit Rev Food Sci Nutr 2019; 59: 2674-2687
  • 56 Thom G, Messow CM, Leslie WS. et al. Predictors of type 2 diabetes remission in the Diabetes Remission Clinical Trial (DiRECT). Diabet Med 2020; 38: e14395
  • 57 de Souza RJ, Mente A, Maroleanu A. et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 2015; 351: h3978
  • 58 Astrup A, Magkos F, Bier DM. et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 76: 844-857
  • 59 Pimpin L, Wu JHY, Haskelberg H. et al. Is Butter Back? A Systematic Review and Meta-Analysis of Butter Consumption and Risk of Cardiovascular Disease, Diabetes, and Total Mortality. PLoS One 2016; 11: e0158118
  • 60 Benatar JR, Sidhu K, Stewart RAH. Effects of high and low fat dairy food on cardio-metabolic risk factors: a meta-analysis of randomized studies. PLoS One 2013; 8: e76480
  • 61 Hooper L, Abdelhamid AS, Jimoh OF. et al. Effects of total fat intake on body fatness in adults. Cochrane Database Syst Rev 2020; 6: CD013636
  • 62 Hooper L, Martin N, Jimoh OF. et al. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020; 8: CD011737
  • 63 Belalcazar LM, Haffner SM, Lang W. et al. Lifestyle intervention and/or statins for the reduction of C-reactive protein in type 2 diabetes: from the look AHEAD study. Obesity (Silver Spring) 2013; 21: 944-950
  • 64 Belalcazar LM, Reboussin DM, Haffner SM. et al. A 1-year lifestyle intervention for weight loss in individuals with type 2 diabetes reduces high C-reactive protein levels and identifies metabolic predictors of change: from the Look AHEAD (Action for Health in Diabetes) study. Diabetes Care 2010; 33: 2297-2303
  • 65 Lu M, Wan Y, Yang B. et al. Effects of low-fat compared with high-fat diet on cardiometabolic indicators in people with overweight and obesity without overt metabolic disturbance: a systematic review and metaanalysis of randomised controlled trials. Br J Nutr 2018; 119: 96-108
  • 66 Wu JHY, Marklund M, Imamura F. et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. Lancet Diabetes Endocrinol 2017; 5: 965-974
  • 67 Li J, Guasch-Ferré M, Li Y. et al. Dietary intake and biomarkers of linoleic acid and mortality: systematic review and meta-analysis of prospective cohort studies. Am J Clin Nutr 2020; 112: 150-167
  • 68 an Pan A, Chen M, Chowdhury R. et al. α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr 2012; 96: 1262-1273
  • 69 Abdelhamid AS, Martin N, Bridges C. et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11: CD012345
  • 70 Abdelhamid AS, Brown TJ, Brainard JS. et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3: CD003177
  • 71 Brown TJ, Brainard J, Song F. et al. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. BMJ 2019; 366: l4697
  • 72 Qian F, Korat AA, Malik V. et al. Metabolic Effects of Monounsaturated Fatty Acid-Enriched Diets Compared With Carbohydrate or Polyunsaturated Fatty Acid-Enriched Diets in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care 2016; 39: 1448-1457
  • 73 Jovanovski E, de Castro Ruiz Marques A, Li D. et al. Effect of high-carbohydrate or high-monounsaturated fatty acid diets on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2019; 77: 19-31
  • 74 Zhang YY, Liu W, Zhao TY. et al. Efficacy of Omega-3 Polyunsaturated Fatty Acids Supplementation in Managing Overweight and Obesity: A Meta-Analysis of Randomized Clinical Trials. J Nutr Health Aging 2017; 21: 187-192
  • 75 Lin N, Shi JJ, Li YM. et al. What is the impact of n-3 PUFAs on inflammation markers in Type 2 diabetic mellitus populations?: a systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis 2016; 15: 133
  • 76 Reis CEG, Landim KC, Nunes ACS. et al. Safety in the hypertriglyceridemia treatment with N-3 polyunsaturated fatty acids on glucose metabolism in subjects with type 2 diabetes mellitus. Nutr Hosp 2014; 31: 570-576
  • 77 Gao L, Cao J, Mao Q. et al. Influence of omega-3 polyunsaturated fatty acid-supplementation on platelet aggregation in humans: a meta-analysis of randomized controlled trials. Atherosclerosis 2013; 226: 328-334
  • 78 He XX, Wu XL, Chen RP. et al. Effectiveness of Omega-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. PLoS One 2016; 11: e0162368
  • 79 Li N, Yue H, Jia M. et al. Effect of low-ratio n-6/n-3 PUFA on blood glucose: a meta-analysis. Food Funct 2019; 10: 4557-4565
  • 80 Wanders AJ, Blom WAM, Zock PL. et al. Plant-derived polyunsaturated fatty acids and markers of glucose metabolism and insulin resistance: a meta-analysis of randomized controlled feeding trials. BMJ Open Diabetes Res Care 2019; 7: e000585
  • 81 Abbott KA, Burrows TL, Thota RN. et al. Do ω-3 PUFAs affect insulin resistance in a sex-specific manner? A systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2016; 104: 1470-1484
  • 82 Jovanovski E, Li D, Thanh Ho HV. et al. The effect of alpha-linolenic acid on glycemic control in individuals with type 2 diabetes: A systematic review and meta-analysis of randomized controlled clinical trials. Medicine (Baltimore) 2017; 96: e6531
  • 83 Faris MAI, Jahrami H, BaHammam A. et al. A systematic review, meta-analysis, and meta-regression of the impact of diurnal intermittent fasting during Ramadan on glucometabolic markers in healthy subjects. Diabetes Res Clin Pract 2020; 165: 108226
  • 84 Mirmiran P, Bahadoran Z, Gaeini Z. et al. Effects of Ramadan intermittent fasting on lipid and lipoprotein parameters: An updated meta-analysis. Nutr Metab Cardiovasc Dis 2019; 29: 906-915
  • 85 Fernando HA, Zibellini J, Harris RA. et al. Effect of Ramadan Fasting on Weight and Body Composition in Healthy Non-Athlete Adults: A Systematic Review and Meta-Analysis. Nutrients 2019; 11: 478
  • 86 Horne BD, May HT, Anderson JL. et al. Usefulness of routine periodic fasting to lower risk of coronary artery disease in patients undergoing coronary angiography. Am J Cardiol 2008; 102: 814-819
  • 87 Horne BD, Muhlestein JB, May HT. et al. Relation of routine, periodic fasting to risk of diabetes mellitus, and coronary artery disease in patients undergoing coronary angiography. Am J Cardiol 2012; 109: 1558-1562
  • 88 Schwingshackl L, Zähringer J, Nitschke K. et al. Impact of intermittent energy restriction on anthropometric outcomes and intermediate disease markers in patients with overweight and obesity: systematic review and meta-analyses. Crit Rev Food Sci Nutr 2021; 61: 1293-1304
  • 89 Park J, Seo YG, Paek YJ. et al. Effect of alternate-day fasting on obesity and cardiometabolic risk: A systematic review and meta-analysis. Metabolism 2020; 111: 154336
  • 90 Harris L, Hamilton S, Azevedo LB. et al. Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Database System Rev Implement Rep 2018; 16: 507-547
  • 91 Seimon RV, Roekenes JA, Zibellini J. et al. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol 2015; 418: 153-172
  • 92 Horne BD, Muhlestein JB, Anderson JL. Health effects of intermittent fasting: hormesis or harm? A systematic review. Am J Clin Nutr 2015; 102: 464-470
  • 93 Borgundvaag E, Mak J, Kramer CK. Metabolic Impact of Intermittent Fasting in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis of Interventional Studies. J Clin Endocrinol Metab 2021; 106: 902-911
  • 94 Parr EB, Devlin BL, Lim KHC. et al. Time-Restricted Eating as a Nutrition Strategy for Individuals with Type 2 Diabetes: A Feasibility Study. Nutrients 2020; 12: 3228
  • 95 Carter S, Clifton PM, Keogh JB. The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes Res Clin Pract 2016; 122: 106-112
  • 96 Carter S, Clifton PM, Keogh JB. The effect of intermittent compared with continuous energy restriction on glycaemic control in patients with type 2 diabetes: 24-month follow-up of a randomised noninferiority trial. Diabetes Res Clin Pract 2019; 151: 11-19
  • 97 Corley BT, Carroll RW, Hall RM. et al. Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabet Med 2018; 35: 588-594
  • 98 Henry RR, Wiest-Kent TA, Scheaffer L. et al. Metabolic consequences of very-low-calorie diet therapy in obese non-insulin-dependent diabetic and nondiabetic subjects. Diabetes 1986; 35: 155-164
  • 99 Amatruda JM, Richeson JF, Welle SL. et al. The safety and efficacy of a controlled low-energy (“very-low-calorie”) diet in the treatment of noninsulin-dependent diabetes and obesity. Arch Intern Med 1988; 148: 873-877
  • 100 Rotella CM, Cresci B, Mannucci E. et al. Short cycles of very low calorie diet in the therapy of obese type II diabetes mellitus. J Endocrinol Invest 1994; 17: 171-179
  • 101 Dhindsa P, Scott AR, Donnelly R. Metabolic and cardiovascular effects of very-low-calorie diet therapy in obese patients with Type 2 diabetes in secondary failure: outcomes after 1 year. Diabet Med 2003; 20: 319-324
  • 102 American Diabetes Association. Standards of medical care in diabetes 2022. Clin Diabetes 2022; 40: 10-38
  • 103 Lean MEJ, Leslie WS, Barnes AC. et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol 2019; 7: 344-355
  • 104 Colditz GA, Willett WC, Rotnitzky A. et al. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med 1995; 122: 481-486
  • 105 Leslie WS, Taylor R, Harris L. et al. Weight losses with low-energy formula diets in obese patients with and without type 2 diabetes: systematic review and meta-analysis. Int J Obes (Lond) 2017; 41: 96-101
  • 106 McCombie L, Brosnahan N, Ross H. et al. Filling the intervention gap: service evaluation of an intensive nonsurgical weight management programme for severe and complex obesity. J Hum Nutr Diet 2019; 32: 329-337
  • 107 Jazet IM, de Craen AJ, van Schie EM. et al. Sustained beneficial metabolic effects 18 months after a 30-day very low calorie diet in severely obese, insulin-treated patients with type 2 diabetes. Diabetes Res Clin Pract 2007; 77: 70-76
  • 108 Kempf K, Schloot NC, Gärtner B. et al. Meal replacement reduces insulin requirement, HbA1c and weight long-term in type 2 diabetes patients with 100 U insulin per day. J Hum Nutr Diet 2014; 27 (Suppl. 02) 21-27
  • 109 Kempf K, Röhling M, Niedermeier K. et al. Individualized Meal Replacement Therapy Improves Clinically Relevant Long-Term Glycemic Control in Poorly Controlled Type 2 Diabetes Patients. Nutrients 2018; 10: 1022
  • 110 Taylor R, Leslie WS, Barnes AC. et al. Clinical and metabolic features of the randomised controlled Diabetes Remission Clinical Trial (DiRECT) cohort. Diabetologia 2018; 61: 589-598
  • 111 Halle M, Röhling M, Banzer W. et al. Meal replacement by formula diet reduces weight more than a lifestyle intervention alone in patients with overweight or obesity and accompanied cardiovascular risk factors-the ACOORH trial. Eur J Clin Nutr 2021; 75: 661-669
  • 112 Röhling M, Kempf K, Banzer W. et al. Prediabetes Conversion to Normoglycemia Is Superior Adding a Low-Carbohydrate and Energy Deficit Formula Diet to Lifestyle Intervention-A 12-Month Subanalysis of the ACOORH Trial. Nutrients 2020; 12: 2022
  • 113 Rosenfeld RM, Kelly JH, Agarwal M. et al. Dietary intervention to treat T2DM in Adults with a goal of remission: An Expert Consensus Statement from the American College of Lifestyle Medcine. Am J Lifestyle Med 2022; 16: 342-362
  • 114 Holman RR, Paul SK, Bethel MA. et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577-1589
  • 115 Haslacher H, Fallmann H, Waldhäusl C. et al. Type 2 diabetes care: Improvement by standardization at a diabetes rehabilitation clinic. An observational report. PLoS One 2019; 14: e0226132
  • 116 Paul SK, Shaw JE, Montvida O. et al. Weight gain in insulin-treated patients by body mass index category at treatment initiation: new evidence from real-world data in patients with type 2 diabetes. Diabetes Obes Metab 2016; 18: 1244-1252
  • 117 American Diabetes Association. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020; 43: S48-S65
  • 118 Dyson PA, Twenefour D, Breen C. et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet Med 2018; 35: 541-547
  • 119 Dworatzek PD, Arcudi K, Gougeon R. et al. Nutrition therapy. Can J Diabetes 2013; 37 (Suppl. 01) S45-S55
  • 120 Hallberg SJ, Dockter NE, Kushner JA. et al. Improving the scientific rigour of nutritional recommendations for adults with type 2 diabetes: A comprehensive review of the American Diabetes Association guideline-recommended eating patterns. Diabetes Obes Metab 2019; 21: 1769-1779
  • 121 Salas-Salvadó J, Becerra-Tomás N, Papandreou C. et al. Dietary Patterns Emphasizing the Consumption of Plant Foods in the Management of Type 2 Diabetes: A Narrative Review. Adv Nutr 2019; 10: S320-S331
  • 122 Viguiliouk E, Kendall CW, Kahleová H. et al. Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2019; 38: 1133-1145
  • 123 Papamichou D, Panagiotakos DB, Itsiopoulos C. Dietary patterns and management of type 2 diabetes: A systematic review of randomised clinical trials. Nutr Metab Cardiovasc Dis 2019; 29: 531-543
  • 124 Ohlsson B. An Okinawan-based Nordic diet improves glucose and lipid metabolism in health and type 2 diabetes, in alignment with changes in the endocrine profile, whereas zonulin levels are elevated. Exp Ther Med 2019; 17: 2883-2893
  • 125 Daneshzad E, Emami S, Darooghegi Mofrad M. et al. Association of modified Nordic diet with cardiovascular risk factors among type 2 diabetes patients: a cross-sectional study. J Cardiovasc Thorac Res 2018; 10: 153-161
  • 126 Via MA, Mechanick JI. Nutrition in Type 2 Diabetes and the Metabolic Syndrome. Med Clin North Am 2016; 100: 1285-1302
  • 127 Garvey WT, Mechanick JI, Brett EM. et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive CLINICAL Practice Guidelines for Medical Care of Patients with Obesity. Endocr Pract 2016; 22 (Suppl. 03) 1-203
  • 128 Ajala O, English P, Pinkney J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr 2013; 97: 505-516
  • 129 Huo R, Du T, Xu Y. et al. Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: a meta-analysis. Eur J Clin Nutr 2015; 69: 1200-1208
  • 130 Pan B, Wu Y, Yang Q. et al. The impact of major dietary patterns on glycemic control, cardiovascular risk factors, and weight loss in patients with type 2 diabetes: A network meta-analysis. J Evid Based Med 2019; 12: 29-39
  • 131 Johannesen CO, Dale HF, Jensen C. et al. Effects of Plant-Based Diets on Outcomes Related to Glucose Metabolism: A Systematic Review. Diabetes Metab Syndr Obes 2020; 13: 2811-2822
  • 132 Toumpanakis A, Turnbull T, Alba-Barba I. Effectiveness of plant-based diets in promoting well-being in the management of type 2 diabetes: a systematic review. BMJ Open Diabetes Res Care 2018; 6: e000534
  • 133 Tran E, Dale HF, Jensen C. et al. Effects of Plant-Based Diets on Weight Status: A Systematic Review. Diabetes Metab Syndr Obes 2020; 13: 3433-3448
  • 134 Austin G, Ferguson J, Garg M. et al. Effects of Plant-Based Diets on Weight Status in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2021; 13: 4099
  • 135 Esposito K, Maiorino MI, Bellastella G. et al. A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ Open 2015; 5: e008222
  • 136 Carter P, Achana F, Troughton J. et al. A Mediterranean diet improves HbA1c but not fasting blood glucose compared to alternative dietary strategies: a network meta-analysis. J Hum Nutr Diet 2014; 27: 280-297
  • 137 Emadian A, Andrews RC, England CY. et al. The effect of macronutrients on glycaemic control: a systematic review of dietary randomised controlled trials in overweight and obese adults with type 2 diabetes in which there was no difference in weight loss between treatment groups. Br J Nutr 2015; 114: 1656-1666
  • 138 Kahleova H, Salas-Salvadó J, Rahelić D. et al. Dietary Patterns and Cardiometabolic Outcomes in Diabetes: A Summary of Systematic Reviews and Meta-Analyses. Nutrients 2019; 11: 2209
  • 139 Deutsche Diabetes Gesellschaft (DDG). Im Internet (Stand: 06.07.2021): https://www.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/01_Die_DDG/03_Ausschuesse/02_Ernaehrung/2015-057-025l_S3_Diabetes_mellitus_Empfehlungen_Proteinzufuhr_2015-10.pdf
  • 140 Pfeiffer AFH, Pedersen E, Schwab U. et al. The Effects of Different Quantities and Qualities of Protein Intake in People with Diabetes Mellitus. Nutrients 2020; 12: 365
  • 141 Mittendorfer B, Klein S, Fontana L. A word of caution against excessive protein intake. Nat Rev Endocrinol 2020; 16: 59-66
  • 142 Labonte CC, Chevalier S, Marliss EB. et al. Effect of 10% dietary protein intake on whole body protein kinetics in type 2 diabetic adults. Clin Nutr 2015; 34: 1115-1121
  • 143 Markova M, Hornemann S, Sucher S. et al. Rate of appearance of amino acids after a meal regulates insulin and glucagon secretion in patients with type 2 diabetes: a randomized clinical trial. Am J Clin Nutr 2018; 108: 279-291
  • 144 Volkert D. Aktuelle ESPEN-Leitlinie Klinische Ernährung und Hydration in der Geriatrie. Dtsch Med Wochenschr 2020; 145: 1306-1314
  • 145 Song M, Fung TT, Hu FB. et al. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern Med 2016; 176: 1453-1463
  • 146 Ye J, Yu Q, Mai W. et al. Dietary protein intake and subsequent risk of type 2 diabetes: a dose-response meta-analysis of prospective cohort studies. Acta Diabetol 2019; 56: 851-870
  • 147 Vernooij RWM, Zeraatkar D, Han MA. et al. Patterns of Red and Processed Meat Consumption and Risk for Cardiometabolic and Cancer Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann Intern Med 2019; 171: 732-741
  • 148 Vogtschmidt YD, Raben A, Faber I. et al. Is protein the forgotten ingredient: Effects of higher compared to lower protein diets on cardiometabolic risk factors. A systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 2021; 328: 124-135
  • 149 Clifton PM, Condo D, Keogh JB. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets-a systematic review and meta analysis. Nutr Metab Cardiovasc Dis 2014; 24: 224-235
  • 150 Hahn D, Hodson EM, Fouque D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst Rev 2020; 10: CD001892
  • 151 Ikizler TA, Burrowes JD, Byham-Gray LD. et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am J Kidney Dis 2020; 76: S1-S107
  • 152 Menon V, Kopple JD, Wang X. et al. Effect of a very low-protein diet on outcomes: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am J Kidney Dis 2009; 53: 208-217
  • 153 Jiang Z, Tang Y, Yang L. et al. Effect of restricted protein diet supplemented with keto analogues in end-stage renal disease: a systematic review and meta-analysis. Int Urol Nephrol 2018; 50: 687-694
  • 154 Fiaccadori E, Sabatino A, Barazzoni R. et al. ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr 2021; 40: 1644-1668
  • 155 Dong JY, Zhang ZL, Wang PY. et al. Effects of high-protein diets on body weight, glycaemic control, blood lipids and blood pressure in type 2 diabetes: meta-analysis of randomised controlled trials. Br J Nutr 2013; 110: 781-789
  • 156 [Anonymous]. Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert Consultation. FAO Food Nutr Pap 1998; 66: 1-140
  • 157 Wolever TMS. Personalized nutrition by prediction of glycaemic responses: fact or fantasy?. Eur J Clin Nutr 2016; 70: 411-413
  • 158 Berry SE, Valdes AM, Drew DA. et al. Human postprandial responses to food and potential for precision nutrition. Nat Med 2020; 26: 964-973
  • 159 Zeevi D, Korem T, Zmora N. et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015; 163: 1079-1094
  • 160 Livesey G, Taylor R, Livesey H. et al. Is there a dose-response relation of dietary glycemic load to risk of type 2 diabetes? Meta-analysis of prospective cohort studies. Am J Clin Nutr 2013; 97: 584-596
  • 161 Livesey G, Livesey H. Coronary Heart Disease and Dietary Carbohydrate, Glycemic Index, and Glycemic Load: Dose-Response Meta-analyses of Prospective Cohort Studies. Mayo Clin Proc Innov Qual Outcomes 2019; 3: 52-69
  • 162 Thomas DE, Elliott EJ. The use of low-glycaemic index diets in diabetes control. Br J Nutr 2010; 104: 797-802
  • 163 Xu B, Fu J, Qiao Y. et al. Higher intake of microbiota-accessible carbohydrates and improved cardiometabolic risk factors: a meta-analysis and umbrella review of dietary management in patients with type 2 diabetes. Am J Clin Nutr 2021; 113: 1515-1530
  • 164 Jenkins DJA, Kendall CWC, McKeown-Eyssen G. et al. Effect of a low glycemic index or a high-cereal fiber diet on type 2 diabetes: a randomized trial. JAMA 2008; 300: 2742-2753
  • 165 Holub I, Gostner A, Hessdörfer S. et al. Improved metabolic control after 12-week dietary intervention with low glycaemic isomalt in patients with type 2 diabetes mellitus. Horm Metab Res 2009; 41: 886-892
  • 166 Brand-Miller J, Hayne S, Petocz P. et al. Low-glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care 2003; 26: 2261-2267
  • 167 Ojo O, Ojo OO, Adebowale F. et al. The Effect of Dietary Glycaemic Index on Glycaemia in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2018; 10: 373
  • 168 Franz MJ, MacLeod J, Evert A. et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Systematic Review of Evidence for Medical Nutrition Therapy Effectiveness and Recommendations for Integration into the Nutrition Care Process. J Acad Nutr Diet 2017; 117: 1659-1679
  • 169 Vega-López S, Venn BJ, Slavin JL. Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease. Nutrients 2018; 10: 1361
  • 170 Jenkins DJA, Dehghan M, Mente A. et al. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N Engl J Med 2021; 384: 1312-1322
  • 171 Coutinho M, Gerstein HC, Wang Y. et al. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95783 individuals followed for 12.4 years. Diabetes Care 1999; 22: 233-240
  • 172 Levitan EB, Song Y, Ford ES. et al. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med 2004; 164: 2147-2155
  • 173 Siri PW, Krauss RM. Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Curr Atheroscler Rep 2005; 7: 455-459
  • 174 Aune D, Norat T, Romundstad P. et al. Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol 2013; 28: 845-858
  • 175 InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 2015; 58: 1394-1408
  • 176 Kim Y, Je Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies. Arch Cardiovasc Dis 2016; 109: 39-54
  • 177 Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med 2020; 17: e1003053
  • 178 Da Silva Borges D, Fernandes R, Thives Mello A. et al. Prebiotics may reduce serum concentrations of C-reactive protein and ghrelin in overweight and obese adults: a systematic review and meta-analysis. Nutr Rev 2020; 78: 235-248
  • 179 Reynolds A, Mann J, Cummings J. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 2019; 393: 434-445
  • 180 Musa-Veloso K, Poon T, Harkness LS. et al. The effects of whole-grain compared with refined wheat, rice, and rye on the postprandial blood glucose response: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2018; 108: 759-774
  • 181 Wang W, Li J, Chen X. et al. Whole grain food diet slightly reduces cardiovascular risks in obese/overweight adults: a systematic review and meta-analysis. BMC Cardiovasc Disord 2020; 20: 82
  • 182 Weickert MO, Roden M, Isken F. et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am J Clin Nutr 2011; 94: 459-471
  • 183 Honsek C, Kabisch S, Kemper M. et al. Fibre supplementation for the prevention of type 2 diabetes and improvement of glucose metabolism: the randomised controlled Optimal Fibre Trial (OptiFiT). Diabetologia 2018; 61: 1295-1305
  • 184 Kabisch S, Meyer NMT, Honsek C. et al. Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients 2019; 11: 2385
  • 185 Hjorth MF, Ritz C, Blaak EE. et al. Pretreatment fasting plasma glucose and insulin modify dietary weight loss success: results from 3 randomized clinical trials. Am J Clin Nutr 2017; 106: 499-505
  • 186 Xiao Z, Chen H, Zhang Y. et al. The effect of psyllium consumption on weight, body mass index, lipid profile, and glucose metabolism in diabetic patients: A systematic review and dose-response meta-analysis of randomized controlled trials. Phytother Res 2020; 34: 1237-1247
  • 187 Wang L, Yang H, Huang H. et al. Inulin-type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: results from a GRADE-assessed systematic review and doseresponse meta-analysis of 33 randomized controlled trials. J Transl Med 2019; 17: 410
  • 188 Rao M, Gao C, Xu L. et al. Effect of Inulin-Type Carbohydrates on Insulin Resistance in Patients with Type 2 Diabetes and Obesity: A Systematic Review and Meta-Analysis. J Diabetes Res 2019; 2019: 5101423
  • 189 Darooghegi Mofrad M, Mozaffari H, Mousavi SM. et al. The effects of psyllium supplementation on body weight, body mass index and waist circumference in adults: A systematic review and dose-response metaanalysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 60: 859-872
  • 190 Rahmani J, Miri A, Černevičiūtė R. et al. Effects of cereal beta-glucan consumption on body weight, body mass index, waist circumference and total energy intake: A meta-analysis of randomized controlled trials. Complement Ther Med 2019; 43: 131-139
  • 191 Ho HVT, Sievenpiper JL, Zurbau A. et al. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials. Br J Nutr 2016; 116: 1369-1382
  • 192 Jovanovski E, Yashpal S, Komishon A. et al. Effect of psyllium (Plantago ovata) fiber on LDL cholesterol and alternative lipid targets, non-HDL cholesterol and apolipoprotein B: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2018; 108: 922-932
  • 193 Brum J, Ramsey D, McRorie J. et al. Meta-Analysis of Usefulness of Psyllium Fiber as Adjuvant Antilipid Therapy to Enhance Cholesterol Lowering Efficacy of Statins. Am J Cardiol 2018; 122: 1169-1174
  • 194 Ho HVT, Jovanovski E, Zurbau A. et al. A systematic review and metaanalysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. Am J Clin Nutr 2017; 105: 1239-1247
  • 195 Pittler MH, Ernst E. Guar gum for body weight reduction: meta-analysis of randomized trials. Am J Med 2001; 110: 724-730
  • 196 Khan K, Jovanovski E, Ho HVT. et al. The effect of viscous soluble fiber on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2018; 28: 3-13
  • 197 Thinggaard M, Jacobsen R, Jeune B. et al. Is the relationship between BMI and mortality increasingly U-shaped with advancing age? A 10-year follow-up of persons aged 70-95 years. J Gerontol A Biol Sci Med Sci 2010; 65: 526-531
  • 198 Guigoz Y, Vellas B. Malnutrition in the elderly: the Mini Nutritional Assessment (MNA). Ther Umsch 1997; 54: 345-350
  • 199 Rubenstein LZ, Harker JO, Salvà A. et al. Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci 2001; 56: M366-M372
  • 200 Bahrmann A, Bahrmann P, Baumann J. et al. S2k-Leitlinie Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Alter. 2. Auflage 2018 – AWMF-Register-Nr. 057-017. Diabetol Stoffwechs 2018; 13: 423-489
  • 201 Volkert D, Bauer J, Frühwald T. et al. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der GESKES, der AKE und der DGG Klinische Ernährung in der Geriatrie. Aktuelle Ernährungsmedizin 2013; 38: e1-e48
  • 202 Zeyfang A, Wernecke J, Bahrmann A. Diabetes mellitus im Alter. Diabetol Stoffwechs 2020; 15 (Suppl. 01) S112-S119
  • 203 Şat S, Aydınkoç-Tuzcu K, Berger F. et al. Diabetes und Migration. Diabetol Stoffwechs 2019; 14 (Suppl. 02) S306-S317
  • 204 Diker O, Deniz T, Çetinkaya A. History of Turkish Cuisine Culture and the Influence of the Balkans. IOSR Journal of Humanities And Social Science 2016; 10: 1-6
  • 205 Schmid B. Ernährung und Migration [Zugl.: München, Techn. Univ., Diss., 2003]. München: Utz, Wiss; c; 2003
  • 206 Magni P, Bier DM, Pecorelli S. et al. Perspective: Improving Nutritional Guidelines for Sustainable Health Policies: Current Status and Perspectives. Adv Nutr 2017; 8: 532-545
  • 207 Praxistool zur Ernährung. Orientierungshilfe für die Diabetesberatung nach geografischen Räumen. Im Internet (Stand: 15.07.2021): https://migration.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/01_Die_DDG/05_Arbeitsgemeinschaften/AG_Migranten/Microsite/200417_Ernaehrungstoo_DDG-GB19-Einleger_04.pdf
  • 208 ElSayed NA, Aleppo G, Aroda VR. et al. Summary of Revisions: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46 (Suppl. 01) S5-S9
  • 209 Evert AB, Dennison M, Gardner CD. et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019; 42: 731-754
  • 210 McGlynn ND, Khan TA, Wang L. et al. Association of Low- and No-Calorie Sweetened Beverages as a Replacement for Sugar-Sweetened Beverages With Body Weight and Cardiometabolic Risk: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5: e222092
  • 211 European Commission. Health Promotion and Disease Prevention Knowledge Gateway: Sugars and Sweeteners. Im Internet (Stand: 21.01.2021): https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/sugars-sweeteners
  • 212 Scientific Advisory Committee on Nutrition. Carbohydrates and Health report, 2015. Im Internet (Stand: 12.06.2023): https://www.gov.uk/government/publications/
  • 213 McKeown NM, Dashti HS, Ma J. et al. Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway: a meta-analysis. Diabetologia 2018; 61: 317-330
  • 214 Malik VS, Hu FB. Fructose and Cardiometabolic Health: What the Evidence From Sugar-Sweetened Beverages Tells Us. J Am Coll Cardiol 2015; 66: 1615-1624
  • 215 Evans RA, Frese M, Romero J. et al. Chronic fructose substitution for glucose or sucrose in food or beverages has little effect on fasting blood glucose, insulin, or triglycerides: a systematic review and metaanalysis. Am J Clin Nutr 2017; 106: 519-529
  • 216 Evans RA, Frese M, Romero J. et al. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis. Am J Clin Nutr 2017; 106: 506-518
  • 217 Le Ma H, Yang A, Derrick J. et al. Beverage consumption and mortality among adults with type 2 diabetes: prospective cohort study. BMJ 2023; 381: e073406
  • 218 Keller A, Heitmann BL, Olsen N. Sugar-sweetened beverages, vascular risk factors and events: a systematic literature review. Public Health Nutr 2015; 18: 1145-1154
  • 219 Huang C, Huang J, Tian Y. et al. Sugar sweetened beverages consumption and risk of coronary heart disease: a meta-analysis of prospective studies. Atherosclerosis 2014; 234: 11-16
  • 220 Narain A, Kwok CS, Mamas MA. Soft drinks and sweetened beverages and the risk of cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Clin Pract 2016; 70: 791-805
  • 221 Cheungpasitporn W, Thongprayoon C, O’Corragain OA. et al. Associations of sugar-sweetened and artificially sweetened soda with chronic kidney disease: a systematic review and meta-analysis. Nephrology (Carlton) 2014; 19: 791-797
  • 222 Chen H, Wang J, Li Z. et al. Consumption of Sugar-Sweetened Beverages Has a Dose-Dependent Effect on the Risk of Non-Alcoholic Fatty Liver Disease: An Updated Systematic Review and Dose-Response Meta-Analysis. Int J Environ Res Public Health 2019; 16: 2192
  • 223 Asgari-Taee F, Zerafati-Shoae N, Dehghani M. et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Nutr 2019; 58: 1759-1769
  • 224 Khan TA, Sievenpiper JL. Controversies about sugars: results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes. Eur J Nutr 2016; 55: 25-43
  • 225 Choo VL, Viguiliouk E, Blanco Mejia S. et al. Food sources of fructosecontaining sugars and glycaemic control: systematic review and metaanalysis of controlled intervention studies. BMJ 2018; 363: k4644
  • 226 Semnani-Azad Z, Khan TA, Blanco Mejia S. et al. Association of Major Food Sources of Fructose-Containing Sugars With Incident Metabolic Syndrome: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3: e209993
  • 227 Bechthold A. Vollwertig essen und trinken nach den 10 Regeln der DGE. Bonn: Deutsche Gesellschaft für Ernährung e. V. (DGE); 2018
  • 228 Wu H, Flint AJ, Qi Q. et al. Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women. JAMA Intern Med 2015; 175: 373-384
  • 229 Johnsen NF, Frederiksen K, Christensen J. et al. Whole-grain products and whole-grain types are associated with lower all-cause and causespecific mortality in the Scandinavian HELGA cohort. Br J Nutr 2015; 114: 608-623
  • 230 Wei H, Gao Z, Liang R. et al. Whole-grain consumption and the risk of all-cause, CVD and cancer mortality: a meta-analysis of prospective cohort studies – CORRIGENDUM. Br J Nutr 2016; 116: 952
  • 231 Chen GC, Tong X, Xu JY. et al. Whole-grain intake and total, cardiovascular, and cancer mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 2016; 104: 164-172
  • 232 Benisi-Kohansal S, Saneei P, Salehi-Marzijarani M. et al. Whole-Grain Intake and Mortality from All Causes, Cardiovascular Disease, and Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv Nutr 2016; 7: 1052-1065
  • 233 Zong G, Gao A, Hu FB. et al. Whole Grain Intake and Mortality From All Causes, Cardiovascular Disease, and Cancer: A Meta-Analysis of Prospective Cohort Studies. Circulation 2016; 133: 2370-2380
  • 234 Aune D, Keum N, Giovannucci E. et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ 2016; 353: i2716
  • 235 Aune D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv Nutr 2019; 10: S404-S421
  • 236 Zhang B, Zhao Q, Guo W. et al. Association of whole grain intake with all-cause, cardiovascular, and cancer mortality: a systematic review and dose-response meta-analysis from prospective cohort studies. Eur J Clin Nutr 2018; 72: 57-65
  • 237 Jenkins DJ, Wesson V, Wolever TM. et al. Wholemeal versus wholegrain breads: proportion of whole or cracked grain and the glycaemic response. BMJ 1988; 297: 958-960
  • 238 Reynolds AN, Mann J, Elbalshy M. et al. Wholegrain Particle Size Influences Postprandial Glycemia in Type 2 Diabetes: A Randomized Crossover Study Comparing Four Wholegrain Breads. Diabetes Care 2020; 43: 476-479
  • 239 Åberg S, Mann J, Neumann S. et al. Whole-Grain Processing and Glycemic Control in Type 2 Diabetes: A Randomized Crossover Trial. Diabetes Care 2020; 43: 1717-1723
  • 240 Jenkins DJA, Kendall CWC, Augustin LSA. et al. Effect of wheat bran on glycemic control and risk factors for cardiovascular disease in type 2 diabetes. Diabetes Care 2002; 25: 1522-1528
  • 241 Miller V, Mente A, Dehghan M. et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. Lancet 2017; 390: 2037-2049
  • 242 Aune D, Giovannucci E, Boffetta P. et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 2017; 46: 1029-1056
  • 243 Bechthold A, Boeing H, Schwedhelm C. et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr 2019; 59: 1071-1090
  • 244 Zhan J, Liu YJ, Cai LB. et al. Fruit and vegetable consumption and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr 2017; 57: 1650-1663
  • 245 Willett W, Rockström J, Loken B. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019; 393: 447-492
  • 246 Barnard ND, Cohen J, Jenkins DJA. et al. A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes. Diabetes Care 2006; 29: 1777-1783
  • 247 Jenkins DJA, Kendall CWC, Augustin LSA. et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med 2012; 172: 1653-1660
  • 248 Renner B, Arens-Azevêdo U, Watzl B. et al. DGE-Positionspapier zur nachhaltigeren Ernährung. Ernährungsumschau 2021; 68: 144-154
  • 249 Jannasch F, Kröger J, Schulze MB. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J Nutr 2017; 147: 1174-1182
  • 250 Wallin A, Di Giuseppe D, Orsini N. et al. Fish consumption, dietary longchain n-3 fatty acids, and risk of type 2 diabetes: systematic review and meta-analysis of prospective studies. Diabetes Care 2012; 35: 918-929
  • 251 Xun P, He K. Fish Consumption and Incidence of Diabetes: meta-analysis of data from 438000 individuals in 12 independent prospective cohorts with an average 11-year follow-up. Diabetes Care 2012; 35: 930-938
  • 252 Schwingshackl L, Hoffmann G, Lampousi AM. et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol 2017; 32: 363-375
  • 253 Muley A, Muley P, Shah M. ALA, fatty fish or marine n-3 fatty acids for preventing DM?: a systematic review and meta-analysis. Curr Diabetes Rev 2014; 10: 158-165
  • 254 Schlesinger S, Neuenschwander M, Schwedhelm C. et al. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv Nutr 2019; 10: 205-218
  • 255 Micha R, Shulkin ML, Peñalvo JL. et al. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS One 2017; 12: e0175149
  • 256 Jayedi A, Shab-Bidar S, Eimeri S. et al. Fish consumption and risk of all-cause and cardiovascular mortality: a dose-response meta-analysis of prospective observational studies. Public Health Nutr 2018; 21: 1297-1306
  • 257 Abdelhamid AS, Brown TJ, Brainard JS. et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11: CD003177
  • 258 Hu Y, Hu FB, Manson JE. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J Am Heart Assoc 2019; 8: e013543
  • 259 Gao H, Geng T, Huang T. et al. Fish oil supplementation and insulin sensitivity: a systematic review and meta-analysis. Lipids Health Dis 2017; 16: 131
  • 260 Chen C, Yu X, Shao S. Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes: A Meta-Analysis. PLoS One 2015; 10: e0139565
  • 261 DGE – Deutsche Gesellschaft für Ernährung. Vollwertig essen und trinken nach den 10 Regeln der DGE. Im Internet (Stand: 13.07.2021): https://www.dge.de/ernaehrungspraxis/vollwertige-ernaehrung/10-regelnder-dge/
  • 262 Zeraatkar D, Han MA, Guyatt GH. et al. Red and Processed Meat Consumption and Risk for All-Cause Mortality and Cardiometabolic Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann Intern Med 2019; 171: 703-710
  • 263 Davidson MH, Hunninghake D, Maki KC. et al. Comparison of the effects of lean red meat vs lean white meat on serum lipid levels among freeliving persons with hypercholesterolemia: a long-term, randomized clinical trial. Arch Intern Med 1999; 159: 1331-1338
  • 264 Hunninghake DB, Maki KC, Kwiterovich PO. et al. Incorporation of lean red meat into a National Cholesterol Education Program Step I diet: a long-term, randomized clinical trial in free-living persons with hypercholesterolemia. J Am Coll Nutr 2000; 19: 351-360
  • 265 Bergeron N, Chiu S, Williams PT. et al. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: a randomized controlled trial. Am J Clin Nutr 2019; 110: 24-33
  • 266 Charlton K, Walton K, Batterham M. et al. Pork and Chicken Meals Similarly Impact on Cognitive Function and Strength in Community-Living Older Adults: A Pilot Study. J Nutr Gerontol Geriatr 2016; 35: 124-145
  • 267 Murphy KJ, Parker B, Dyer KA. et al. A comparison of regular consumption of fresh lean pork, beef and chicken on body composition: a randomized cross-over trial. Nutrients 2014; 6: 682-696
  • 268 Murphy KJ, Thomson RL, Coates AM. et al. Effects of eating fresh lean pork on cardiometabolic health parameters. Nutrients 2012; 4: 711-723
  • 269 Johnston BC, Zeraatkar D, Han MA. et al. Unprocessed Red Meat and Processed Meat Consumption: Dietary Guideline Recommendations From the Nutritional Recommendations (NutriRECS) Consortium. Ann Intern Med 2019; 171: 756-764
  • 270 Davis PA, Yokoyama W. Cinnamon intake lowers fasting blood glucose: meta-analysis. J Med Food 2011; 14: 884-889
  • 271 Akilen R, Tsiami A, Devendra D. et al. Cinnamon in glycaemic control: Systematic review and meta analysis. Clin Nutr 2012; 31: 609-615
  • 272 Leach MJ, Kumar S. Cinnamon for diabetes mellitus. Cochrane Database Syst Rev 2012; CD007170
  • 273 Allen RW, Schwartzman E, Baker WL. et al. Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann Fam Med 2013; 11: 452-459
  • 274 Costello RB, Dwyer JT, Saldanha L. et al. Do Cinnamon Supplements Have a Role in Glycemic Control in Type 2 Diabetes? A Narrative Review. J Acad Nutr Diet 2016; 116: 1794-1802
  • 275 Sierra-Puente D, Abadi-Alfie S, Arakanchi-Altaled K. et al. Cinammon (Cinnamomum Spp.) and Type 2 Diabetes Mellitus. CTNR 2019; 18: 247-255
  • 276 Chan CB, Hashemi Z, Subhan FB. The impact of low and no-caloric sweeteners on glucose absorption, incretin secretion, and glucose tolerance. Appl Physiol Nutr Metab 2017; 42: 793-801
  • 277 Brown AW, Bohan Brown MM, Onken KL. et al. Short-term consumption of sucralose, a nonnutritive sweetener, is similar to water with regard to select markers of hunger signaling and short-term glucose homeostasis in women. Nutr Res 2011; 31: 882-888
  • 278 Ford HE, Peters V, Martin NM. et al. Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. Eur J Clin Nutr 2011; 65: 508-513
  • 279 Steinert RE, Frey F, Töpfer A. et al. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. Br J Nutr 2011; 105: 1320-1328
  • 280 Barriocanal LA, Palacios M, Benitez G. et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. Regul Toxicol Pharmacol 2008; 51: 37-41
  • 281 Brown RJ, Walter M, Rother KI. Effects of diet soda on gut hormones in youths with diabetes. Diabetes Care 2012; 35: 959-964
  • 282 Grotz VL, Henry RR, McGill JB. et al. Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes. J Am Diet Assoc 2003; 103: 1607-1612
  • 283 Maki KC, Curry LL, Reeves MS. et al. Chronic consumption of rebaudioside A, a steviol glycoside, in men and women with type 2 diabetes mellitus. Food Chem Toxicol 2008; 46 (Suppl. 07) S47-S53
  • 284 Olalde-Mendoza L, Moreno-González YE. Modificación de la glucemia en ayuno en adultos con diabetes mellitus tipo 2 después de la ingesta de refrescos de cola y de dieta en el estado de querétaro, México. Arch Latinoam Nutr 2013; 63: 142-147
  • 285 Temizkan S, Deyneli O, Yasar M. et al. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur J Clin Nutr 2015; 69: 162-166
  • 286 Ferrazzano GF, Cantile T, Alcidi B. et al. Is Stevia rebaudiana Bertoni a Non Cariogenic Sweetener? A Review. Molecules 2015; 21: E38
  • 287 Prashant GM, Patil RB, Nagaraj T. et al. The antimicrobial activity of the three commercially available intense sweeteners against common periodontal pathogens: an in vitro study. J Contemp Dent Pract 2012; 13: 749-752
  • 288 Suez J, Korem T, Zeevi D. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014; 514: 181-186
  • 289 EFSA 2013. EFSA schließt vollständige Risikobewertung zu Aspartam ab und kommt zu dem Schluss, dass es in den derzeitigen Expositionsmengen sicher ist. Im Internet (Stand: 01.09.2020): https://www.efsa.europa.eu/de/press/news/131210
  • 290 Bundesinstitut für Risikobewertung. Bewertung von Süßstoffen und Zuckeraustauschstoffen. Hintergrundinformation Nr. 025/2014 des BfR vom 1. Juli 2014. Im Internet (Stand; 01.09.2020): www.bfr.bund.de/cm/343/bewertung_von_suessstoffen.pdf
  • 291 Bock PM, Telo GH, Ramalho R. et al. The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in individuals with diabetes: a systematic review and meta-analysis. Diabetologia 2021; 64: 26-41
  • 292 Rittiphairoj T, Pongpirul K, Janchot K. et al. Probiotics Contribute to Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Adv Nutr 2021; 12: 722-734
  • 293 Tao YW, Gu YL, Mao XQ. et al. Effects of probiotics on type II diabetes mellitus: a meta-analysis. J Transl Med 2020; 18: 30
  • 294 Ardeshirlarijani E, Tabatabaei-Malazy O, Mohseni S. et al. Effect of probiotics supplementation on glucose and oxidative stress in type 2 diabetes mellitus: a meta-analysis of randomized trials. Daru 2019; 27: 827-837
  • 295 Mahboobi S, Rahimi F, Jafarnejad S. Effects of Prebiotic and Synbiotic Supplementation on Glycaemia and Lipid Profile in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Adv Pharm Bull 2018; 8: 565-574
  • 296 Akbari V, Hendijani F. Effects of probiotic supplementation in patients with type 2 diabetes: systematic review and meta-analysis. Nutr Rev 2016; 74: 774-784
  • 297 Yao K, Zeng L, He Q. et al. Effect of Probiotics on Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus: A Meta-Analysis of 12 Randomized Controlled Trials. Med Sci Monit 2017; 23: 3044-3053
  • 298 Wang C, Zhang C, Li S. et al. Effects of Probiotic Supplementation on Dyslipidemia in Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Foods 2020; 9: 1540
  • 299 Kasińska MA, Drzewoski J. Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol Arch Med Wewn 2015; 125: 803-813
  • 300 Palacios T, Vitetta L, Coulson S. et al. Targeting the Intestinal Microbiota to Prevent Type 2 Diabetes and Enhance the Effect of Metformin on Glycaemia: A Randomised Controlled Pilot Study. Nutrients 2020; 12: 2041
  • 301 Zheng M, Zhang R, Tian X. et al. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Front Microbiol 2017; 8: 908
  • 302 Wong A, Ngu DYS, Dan LA. et al. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr J 2015; 14: 95
  • 303 BgVV – ehemals: Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin. Abschlussbericht der Arbeitsgruppe „Probiotische Mikroorganismenkulturen in Lebensmitteln“ am BgVV. Im Internet (Stand: 13.07.2021): https://mobil.bfr.bund.de/cm/343/probiot.pdf
  • 304 de Vrese M. Mikrobiologie, Wirkung und Sicherheit von Probiotika. Monatsschr Kinderheilkd 2008; 156: 1063-1069
  • 305 Vrieze A, van Nood E, Holleman F. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-916.e7
  • 306 Simon MC, Strassburger K, Nowotny B. et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care 2015; 38: 1827-1834
  • 307 Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut 2014; 63: 1513-1521
  • 308 Kjems LL, Holst JJ, Vølund A. et al. The influence of GLP-1 on glucosestimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003; 52: 380-386
  • 309 Karlsson FH, Tremaroli V, Nookaew I. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498: 99-103
  • 310 Qin J, Li Y, Cai Z. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60
  • 311 Larsen N, Vogensen FK, van den Berg FWJ. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5: e9085
  • 312 Wu H, Esteve E, Tremaroli V. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017; 23: 850-858
  • 313 Forslund K, Hildebrand F, Nielsen T. et al. Corrigendum: Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2017; 545: 116
  • 314 Forslund K, Hildebrand F, Nielsen T. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528: 262-266
  • 315 Caesar R. Pharmacologic and Nonpharmacologic Therapies for the Gut Microbiota in Type 2 Diabetes. Can J Diabetes 2019; 43: 224-231
  • 316 Salari A, Ghodrat S, Gheflati A. et al. Effect of kefir beverage consumption on glycemic control: A systematic review and meta-analysis of randomized controlled clinical trials. Complementary therapies in clinical practice 2021; 44: 101443
  • 317 Evert AB, Boucher JL, Cypress M. et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2014; 37 (Suppl. 01) S120-S143
  • 318 Sievenpiper JL, Chan CB, Dworatzek PD. et al. Nutrition Therapy. Can J Diabetes 2018; 42 (Suppl. 01) S64-S79
  • 319 Sievenpiper JL, de Souza RJ, Mirrahimi A. et al. Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. Ann Intern Med 2012; 156: 291-304
  • 320 Ha V, Sievenpiper JL, de Souza RJ. et al. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension 2012; 59: 787-795
  • 321 Chiavaroli L, de Souza RJ, Ha V. et al. Effect of Fructose on Established Lipid Targets: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. J Am Heart Assoc 2015; 4: e001700
  • 322 Wang X, Ouyang Y, Liu J. et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014; 349: g4490
  • 323 Chiu S, Sievenpiper JL, de Souza RJ. et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and metaanalysis of controlled feeding trials. Eur J Clin Nutr 2014; 68: 416-423
  • 324 Wang DD, Sievenpiper JL, de Souza RJ. et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. J Nutr 2012; 142: 916-923
  • 325 Cozma AI, Sievenpiper JL, de Souza RJ. et al. Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes Care 2012; 35: 1611-1620
  • 326 Sievenpiper JL, Chiavaroli L, de Souza RJ. et al. “Catalytic” doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding trials. Br J Nutr 2012; 108: 418-423
  • 327 Sievenpiper JL, Carleton AJ, Chatha S. et al. Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experimental trials in humans. Diabetes Care 2009; 32: 1930-1937
  • 328 Chung M, Ma J, Patel K. et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. Am J Clin Nutr 2014; 100: 833-849
  • 329 Goran MI, Ulijaszek SJ, Ventura EE. High fructose corn syrup and diabetes prevalence: a global perspective. Glob Public Health 2013; 8: 55-64
  • 330 Tsilas CS, de Souza RJ, Mejia SB. et al. Relation of total sugars, fructose and sucrose with incident type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. CMAJ 2017; 189: E711-E720
  • 331 David Wang D, Sievenpiper JL, de Souza RJ. et al. Effect of fructose on postprandial triglycerides: a systematic review and meta-analysis of controlled feeding trials. Atherosclerosis 2014; 232: 125-133
  • 332 Zhang YH, An T, Zhang RC. et al. Very high fructose intake increases serum LDL-cholesterol and total cholesterol: a meta-analysis of controlled feeding trials. J Nutr 2013; 143: 1391-1398
  • 333 Schwingshackl L, Neuenschwander M, Hoffmann G. et al. Dietary sugars and cardiometabolic risk factors: a network meta-analysis on isocaloric substitution interventions. Am J Clin Nutr 2020; 111: 187-196
  • 334 Weber KS, Simon MC, Strassburger K. et al. Habitual Fructose Intake Relates to Insulin Sensitivity and Fatty Liver Index in Recent-Onset Type 2 Diabetes Patients and Individuals without Diabetes. Nutrients 2018; 10: 774
  • 335 ter Horst KW, Schene MR, Holman R. et al. Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: a systematic review and meta-analysis of diet-intervention trials. Am J Clin Nutr 2016; 104: 1562-1576
  • 336 Kulzer B, Albus C, Herpertz S. et al. Psychosoziales und Diabetes. Diabetologie 2019; 15: 452-469
  • 337 Ahmed AT, Karter AJ, Warton EM. et al. The relationship between alcohol consumption and glycemic control among patients with diabetes: the Kaiser Permanente Northern California Diabetes Registry. J Gen Intern Med 2008; 23: 275-282
  • 338 Bantle AE, Thomas W, Bantle JP. Metabolic effects of alcohol in the form of wine in persons with type 2 diabetes mellitus. Metabolism 2008; 57: 241-245
  • 339 Avogaro A, Beltramello P, Gnudi L. et al. Alcohol intake impairs glucose counterregulation during acute insulin-induced hypoglycemia in IDDM patients. Evidence for a critical role of free fatty acids. Diabetes 1993; 42: 1626-1634
  • 340 Turner BC, Jenkins E, Kerr D. et al. The effect of evening alcohol consumption on next-morning glucose control in type 1 diabetes. Diabetes Care 2001; 24: 1888-1893
  • 341 Richardson T, Weiss M, Thomas P. et al. Day after the night before: influence of evening alcohol on risk of hypoglycemia in patients with type 1 diabetes. Diabetes Care 2005; 28: 1801-1802
  • 342 Pedersen-Bjergaard U, Reubsaet JLE, Nielsen SL. et al. Psychoactive drugs, alcohol, and severe hypoglycemia in insulin-treated diabetes: analysis of 141 cases. Am J Med 2005; 118: 307-310
  • 343 Frier B, Fisher M. Hrsg. Moderators, monitoring and management of hypoglycaemia [101–120]. Chichester: John Wiley & Sons; 2007
  • 344 Ahmed AT, Karter AJ, Liu J. Alcohol consumption is inversely associated with adherence to diabetes self-care behaviours. Diabet Med 2006; 23: 795-802
  • 345 Nahas R, Goguen J. Natural health products. Can J Diabetes 2013; 37 (Suppl. 01) S97-S99
  • 346 Hartweg J, Perera R, Montori V. et al. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev 2008; CD003205
  • 347 Hartweg J, Farmer AJ, Holman RR. et al. Potenzial impact of omega-3 treatment on cardiovascular disease in type 2 diabetes. Curr Opin Lipidol 2009; 20: 30-38
  • 348 O’Mahoney LL, Matu J, Price OJ. et al. Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials. Cardiovasc Diabetol 2018; 17: 98
  • 349 Mirhosseini N, Vatanparast H, Mazidi M. et al. The Effect of Improved Serum 25-Hydroxyvitamin D Status on Glycemic Control in Diabetic Patients: A Meta-Analysis. J Clin Endocrinol Metab 2017; 102: 3097-3110
  • 350 Li X, Liu Y, Zheng Y. et al. The Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis. Nutrients 2018; 10: 375
  • 351 Jafari T, Fallah AA, Barani A. Effects of vitamin D on serum lipid profile in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Clin Nutr 2016; 35: 1259-1268
  • 352 Mousa A, Naderpoor N, Teede H. et al. Vitamin D supplementation for improvement of chronic low-grade inflammation in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2018; 76: 380-394
  • 353 Lee KJ, Lee YJ. Effects of vitamin D on blood pressure in patients with type 2 diabetes mellitus. Int J Clin Pharmacol Ther 2016; 54: 233-242
  • 354 Yu Y, Tian L, Xiao Y. et al. Effect of Vitamin D Supplementation on Some Inflammatory Biomarkers in Type 2 Diabetes Mellitus Subjects: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Ann Nutr Metab 2018; 73: 62-73
  • 355 Verma H, Garg R. Effect of magnesium supplementation on type 2 diabetes associated cardiovascular risk factors: a systematic review and meta-analysis. J Hum Nutr Diet 2017; 30: 621-633
  • 356 Asbaghi O, Moradi S, Kashkooli S. et al. The effects of oral magnesium supplementation on glycaemic control in patients with type 2 diabetes: a systematic review and dose-response meta-analysis of controlled clinical trials. Br J Nutr 2022; 128: 2363-2372
  • 357 Asbaghi O, Hosseini R, Boozari B. et al. The Effects of Magnesium Supplementation on Blood Pressure and Obesity Measure Among Type 2 Diabetes Patient: a Systematic Review and Meta-analysis of Randomized Controlled Trials. Biol Trace Elem Res 2021; 199: 413-424
  • 358 Vincent JB. Elucidating a biological role for chromium at a molecular level. Acc Chem Res 2000; 33: 503-510
  • 359 Asbaghi O, Fatemeh N, Mahnaz RK. et al. Effects of chromium supplementation on glycemic control in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2020; 161: 105098
  • 360 Yin RV, Phung OJ. Effect of chromium supplementation on glycated hemoglobin and fasting plasma glucose in patients with diabetes mellitus. Nutr J 2015; 14: 14
  • 361 Suksomboon N, Poolsup N, Yuwanakorn A. Systematic review and meta-analysis of the efficacy and safety of chromium supplementation in diabetes. J Clin Pharm Ther 2014; 39: 292-306
  • 362 Chimienti F. Zinc, pancreatic islet cell function and diabetes: new insights into an old story. Nutr Res Rev 2013; 26: 1-11
  • 363 de Carvalho GB. Zinc’s role in the glycemic control of patients with type 2 diabetes: a systematic review. BioMetals 2017; 30: 161-162
  • 364 Fernández-Cao JC, Warthon-Medina M, Hall Moran V. et al. Dietary zinc intake and whole blood zinc concentration in subjects with type 2 diabetes versus healthy subjects: A systematic review, meta-analysis and meta-regression. J Trace Elem Med Biol 2018; 49: 241-251
  • 365 Wang X, Wu W, Zheng W. et al. Zinc supplementation improves glycemic control for diabetes prevention and management: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2019; 110: 76-90
  • 366 Asbaghi O, Sadeghian M, Fouladvand F. et al. Effects of zinc supplementation on lipid profile in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2020; 30: 1260-1271
  • 367 Rahimi R, Nikfar S, Larijani B. et al. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 2005; 59: 365-373
  • 368 Ashor AW, Werner AD, Lara J. et al. Effects of vitamin C supplementation on glycaemic control: a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr 2017; 71: 1371-1380
  • 369 Xu R, Zhang S, Tao A. et al. Influence of vitamin E supplementation on glycaemic control: a meta-analysis of randomised controlled trials. PLoS One 2014; 9: e95008
  • 370 Khodaeian M, Tabatabaei-Malazy O, Qorbani M. et al. Effect of vitamins C and E on insulin resistance in diabetes: a meta-analysis study. Eur J Clin Invest 2015; 45: 1161-1174
  • 371 Montero D, Walther G, Stehouwer CDA. et al. Effect of antioxidant vitamin supplementation on endothelial function in type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Obes Rev 2014; 15: 107-116
  • 372 Tabatabaei-Malazy O, Ardeshirlarijani E, Namazi N. et al. Dietary antioxidative supplements and diabetic retinopathy; a systematic review. J Diabetes Metab Disord 2019; 18: 705-716
  • 373 Jeyaraman MM, Al-Yousif NSH, Singh Mann A. et al. Resveratrol for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev 2020; 1: CD011919
  • 374 Palma-Duran SA, Vlassopoulos A, Lean M. et al. Nutritional intervention and impact of polyphenol on glycohemoglobin (HbA1c) in non-diabetic and type 2 diabetic subjects: Systematic review and meta-analysis. Crit Rev Food Sci Nutr 2017; 57: 975-986
  • 375 Fogacci F, Tocci G, Presta V. et al. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit Rev Food Sci Nutr 2019; 59: 1605-1618
  • 376 Drzikova B. Haferprodukte mit modifiziertem Gehalt an β-Glucanen und resistenter Stärke und ihre Effekte auf den Gastrointestinaltrakt unter In-vitro- und In-vivo-Bedingungen (2005). Im Internet (Stand: 12.06.2023): http://opus.kobv.de/ubp/volltexte/205/592/
  • 377 He L, Zhao J, Huang Y. et al. The difference between oats and beta-glucan extract intake in the management of HbA1c, fasting glucose and insulin sensitivity: a meta-analysis of randomized controlled trials. Food Funct 2016; 7: 1413-1428
  • 378 Abbasi NN, Purslow PP, Tosh SM. et al. Oat β-glucan depresses SGLT1-and GLUT2-mediated glucose transport in intestinal epithelial cells (IEC-6). Nutr Res 2016; 36: 541-552
  • 379 Wang F, Yu G, Zhang Y. et al. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins. J Agric Food Chem 2015; 63: 9543-9549
  • 380 Liu M, Zhang Y, Zhang H. et al. The anti-diabetic activity of oat β-d-glucan in streptozotocin-nicotinamide induced diabetic mice. Int J Biol Macromol 2016; 91: 1170-1176
  • 381 Lammert A, Kratzsch J, Selhorst J. et al. Clinical benefit of a short term dietary oatmeal intervention in patients with type 2 diabetes and severe insulin resistance: a pilot study. Exp Clin Endocrinol Diabetes 2008; 116: 132-134
  • 382 Delgado G, Kleber ME, Krämer BK. et al. Dietary Intervention with Oatmeal in Patients with uncontrolled Type 2 Diabetes Mellitus – A Crossover Study. Exp Clin Endocrinol Diabetes 2019; 127: 623-629
  • 383 Delgado GE, Krämer BK, Scharnagl H. et al. Bile Acids in Patients with Uncontrolled Type 2 Diabetes Mellitus – The Effect of Two Days of Oatmeal Treatment. Exp Clin Endocrinol Diabetes 2020; 128: 624-630
  • 384 Behall KM, Scholfield DJ, Hallfrisch J. Comparison of hormone and glucose responses of overweight women to barley and oats. J Am Coll Nutr 2005; 24: 182-188
  • 385 Braaten JT, Scott FW, Wood PJ. et al. High beta-glucan oat bran and oat gum reduce postprandial blood glucose and insulin in subjects with and without type 2 diabetes. Diabet Med 1994; 11: 312-318
  • 386 Pick ME, Hawrysh ZJ, Gee MI. et al. Oat bran concentrate bread products improve long-term control of diabetes: a pilot study. J Am Diet Assoc 1996; 96: 1254-1261
  • 387 Tapola N, Karvonen H, Niskanen L. et al. Glycemic responses of oat bran products in type 2 diabetic patients. Nutr Metab Cardiovasc Dis 2005; 15: 255-261
  • 388 Tappy L, Gügolz E, Würsch P. Effects of breakfast cereals containing various amounts of beta-glucan fibers on plasma glucose and insulin responses in NIDDM subjects. Diabetes Care 1996; 19: 831-834
  • 389 Wood PJ, Beer MU, Butler G. Evaluation of role of concentration and molecular weight of oat beta-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose load. Br J Nutr 2000; 84: 19-23
  • 390 [Anonym]. Scientific Opinion on the substantiation of health claims related to beta glucans and maintenance or achievement of normal blood glucose concentrations (ID 756, 802, 2935) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFS2 2010; 8: 1482
  • 391 Amtsblatt der Europäischen Union 2011 L 136/1 vom 25.5.2012. Im Internet (Stand: 04.07.2021): https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:136:0001:0040:DE:PDF
  • 392 Zurbau A, Noronha JC, Khan TA. et al. The effect of oat β-glucan on postprandial blood glucose and insulin responses: a systematic review and meta-analysis. Eur J Clin Nutr 2021; 75: 1540-1554
  • 393 Battilana P, Ornstein K, Minehira K. et al. Mechanisms of action of betaglucan in postprandial glucose metabolism in healthy men. Eur J Clin Nutr 2001; 55: 327-333
  • 394 Jenkins AL, Jenkins DJA, Zdravkovic U. et al. Depression of the glycemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes. Eur J Clin Nutr 2002; 56: 622-628
  • 395 Kronsbein P, Schlemper N. Pilotstudie zu den Effekten eines individualisierten Gewichtsreduktionsprogramms mit mehreren strukturiert vermittelten Methoden zur Gewichtsabnahme (#44). Abstracts des Adipositas-Kongresses 2022 zur 38. Jahrestagung der Deutschen Adipositas Gesellschaft e.V. DAG. Adipositas – Ursachen, Folgeerkrankungen, Therapie 2022; 3: 183-184
  • 396 Rosenfeld RM, Kelly JH, Agarwal M. et al. Dietary Interventions to Treat Type 2 Diabetes in Adults with a Goal of Remission: An Expert Consensus Statement from the American College of Lifestyle Medicine. Am J Lifestyle Med 2022; 18: 342-362
  • 397 Asbaghi O, Moradi S, Kashkooli S. et al. The effects of oral magnesium supplementation on glycaemic control in patients with type 2 diabetes: a systematic review and dose-response meta-analysis of controlled clinical trials. Br J Nutr 2022; 20: 1-10
  • 398 Imamura F, O’Connor L, Ye Z. et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015; 351: h3576
  • 399 Malik VS, Hu FB. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat Rev Endocrinol 2022; 18: 205-218
  • 400 Templeman I, Smith HA, Chowdhury E. et al. A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults. Sci Transl Med 2021; 13: eabd8034
  • 401 Kronsbein P, Schlemper N. Pilotstudie zu den Effekten eines individualisierten Gewichtsreduktionsprogramms mit mehreren strukturiert vermittelten Methoden zur Gewichtsabnahme (#44). In: Abstracts des Adipositas-Kongresses 2022 zur 38. Jahrestagung der Deutschen Adipositas Gesellschaft e.V. DAG. Abstracts des Adipositas-Kongresses 2022 zur 38. Jahrestagung der Deutschen Adipositas Gesellschaft e.V. DAG. München, 10/6/20222–110/8/2022: Georg Thieme Verlag (Adipositas – Ursachen, Folgeerkrankungen, Therapie); 2022