Subscribe to RSS
DOI: 10.1055/a-2006-9754
Advances in Enantioconvergent Transition-Metal-Catalyzed Cross-Coupling Reactions of Racemic α-Silyl and α-Boryl Reagents
This scientific paper was supported by the Onassis Foundation - Scholarship ID: F ZM 045-2/2019-2020. Additional funding by the Deutsche Forschungsgemeinschaft is also gratefully acknowledged (Oe 249/25-1). M.O. is indebted to the Einstein Foundation Berlin for an endowed professorship.
Abstract
Enantioconvergent transition-metal-catalyzed cross-coupling reactions of racemic α-silyl and α-boryl reagents represent one of the key tools to afford highly enantioenriched α-chiral silanes and boranes. The approach traces back the use of α-silyl nucleophiles, employing palladium precatalysts. More recent work makes use of α-silyl and α-boryl electrophiles under nickel and copper catalysis. The limits of this field have been significantly extended by the design and development of numerous chiral ligands. In this short review, the progress made in this rapidly evolving field is summarized.
1 Introduction
2 α-Silyl Nucleophiles and Electrophiles
2.1 Palladium Catalysis
2.2 Nickel Catalysis
2.3 Copper Catalysis
3 α-Boryl Electrophiles
3.1 Nickel Catalysis
4 Summary and Outlook
Key words
asymmetric catalysis - boron - cross-coupling reactions - enantioconvergence - enantioselectivity - siliconPublication History
Received: 11 December 2022
Accepted after revision: 03 January 2023
Accepted Manuscript online:
03 January 2023
Article published online:
08 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014
- 2a Yi L, Ji T, Chen K.-Q, Chen X.-Y, Rueping M. CCS Chem. 2022; 4: 9
- 2b Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 2c Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
- 2d Poremba KE, Dibrell SE, Reisman SE. ACS Catal. 2020; 10: 8237
- 3a Fu GC. ACS Cent. Sci. 2017; 3: 692
- 3b Choi J, Fu GC. Science 2017; 356: eaaf7230
- 3c Kaga A, Chiba S. ACS Catal. 2017; 7: 4697
- 3d Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
- 3e Rudolph A, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 2656
- 3f Glorius F. Angew. Chem. Int. Ed. 2008; 47: 8347
- 4a Organosilicon Chemistry: Novel Approaches and Reactions . Hiyama T, Oestreich M. Wiley-VCH; Weinheim: 2019
- 4b Komiyama T, Minami Y, Hiyama T. ACS Catal. 2017; 7: 631
- 4c Denmark SE, Liu JH.-C. Angew. Chem. Int. Ed. 2010; 49: 2978
- 4d Hydrosilylation . In Advances in Silicon Science, Vol. 1. Marciniec B. Springer; Berlin: 2009
- 5a Synthesis and Application of Organoboron Compounds. In Topics in Organometallic Chemistry, Vol. 49. Fernández E, Whiting A. Springer; Cham: 2015
- 5b Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
- 6a Jiang X, Gandelman M. J. Am. Chem. Soc. 2015; 137: 2542
- 6b Jiang X, Kulbitski K, Nisnevich G, Gandelman M. Chem. Sci. 2016; 7: 2762
- 7a Varenikov A, Gandelman M. J. Am. Chem. Soc. 2019; 141: 10994
- 7b He S.-J, Wang J.-W, Li Y, Xu Z.-Y, Wang X.-X, Lu X, Fu Y. J. Am. Chem. Soc. 2020; 142: 214
- 7c Sun D, Ma G, Zhao X, Lei C, Gong H. Chem. Sci. 2021; 12: 5253
- 7d Geng J, Sun D, Song Y, Tong W, Wu F. Org. Lett. 2022; 24: 1807
- 7e Wang H, Zheng P, Wu X, Li Y, XU T. J. Am. Chem. Soc. 2022; 144: 3989
- 8a Varenikov A, Gandelman M. Nat. Commun. 2018; 9: 3566
- 8b Varenikov A, Shapiro E, Gandelman M. Org. Lett. 2020; 22: 9386
- 8c Min Y, Sheng J, Yu J.-L, Ni S.-X, Ma G, Gong H, Wang X.-S. Angew. Chem. Int. Ed. 2021; 60: 9947
- 8d Zhou P, Li X, Wang D, XU T. Org. Lett. 2021; 23: 4683
- 8e Wu B.-B, Xu J, Bian K.-J, Gao Q, Wang X.-S. J. Am. Chem. Soc. 2022; 144: 6543
- 8f Guo W, Cheng L, Ma G, Tong W, Wu F. Org. Lett. 2022; 24: 1796
- 9 For a review on C(sp3)–Si cross-coupling, see: Bähr S, Xue W, Oestreich M. ACS Catal. 2019; 9: 16
- 10a Hayashi T, Konishi M, Ito H, Kumada M. J. Am. Chem. Soc. 1982; 104: 4962
- 10b Hayashi T, Konishi M, Okamoto Y, Kabeta K, Kumada M. J. Org. Chem. 1986; 51: 3772
- 11 Hayashi T, Okamoto Y, Kumada M. Tetrahedron Lett. 1983; 24: 807
- 12a Juhasz K, Magyar A, Hell Z. Synthesis 2021; 53: 983
- 12b Heravi MM, Zadsirjan V, Hajiabbasi P, Hamidi H. Monatsh. Chem. 2019; 150: 535
- 12c Grignard Reagents and Transition Metal Catalysts: Formation of C–C Bonds by Cross-Coupling. Cossy J. De Gruyter; Berlin: 2016
- 13a Hayashi T, Fukushima M, Konishi M, Kumada M. Tetrahedron Lett. 1980; 21: 79
- 13b Hayashi T, Kanehira K, Hioki T, Kumada M. Tetrahedron Lett. 1981; 22: 137
- 14 Cardellicchio C, Fiandanese V, Naso F. Gazz. Chim. Ital. 1991; 121: 11
- 15 Hofstra JL, Cherney AH, Ordner CM, Reisman SE. J. Am. Chem. Soc. 2018; 140: 139
- 16a Everson DA, Jones BA, Weix DJ. J. Am. Chem. Soc. 2012; 134: 6146
- 16b Biswas S, Weix DJ. J. Am. Chem. Soc. 2013; 135: 16192
- 16c Ren Q, Jiang F, Gong H. J. Organomet. Chem. 2014; 770: 130
- 17 Schwarzwalder GM, Matier CD, Fu GC. Angew. Chem. Int. Ed. 2019; 58: 3571
- 18 Yi H, Mao W, Oestreich M. Angew. Chem. Int. Ed. 2019; 58: 3575
- 19a Anderson TJ, Jones GD, Vicic DA. J. Am. Chem. Soc. 2004; 126: 8100
- 19b Jones GD, McFarland C, Anderson TJ, Vicic DA. Chem. Commun. 2005; 4211
- 20 Kranidiotis-Hisatomi N, Yi H, Oestreich M. Angew. Chem. Int. Ed. 2021; 60: 13652
- 21 Kranidiotis-Hisatomi N, Oestreich M. Org. Lett. 2022; 24: 4987
- 22 Xu Y, Yi H, Oestreich M. Organometallics 2021; 40: 2194
- 23 Guo R, Sang J, Xiao H, Li J, Zhang G. Chin. J. Chem. 2022; 40: 1337
- 24 Schmidt J, Choi J, Liu AT, Slusarczyk M, Fu GC. Science 2016; 354: 1265
- 25 Sun S.-Z, Martin R. Angew. Chem. Int. Ed. 2018; 57: 3622
- 26 Sun S.-Z, Börjesson M, Martin-Montero R, Martin R. J. Am. Chem. Soc. 2018; 140: 12765
- 27 Wang J.-W, Li Y, Nie W, Chang Z, Yu Z.-A, Zhao Y.-F, Lu X, Fu Y. Nat. Commun. 2021; 12: 1313
- 28 Zheng P, Zhou P, Wang D, Xu W, Wang H, XU T. Nat. Commun. 2021; 12: 1646
- 29 Wang D, XU T. ACS Catal. 2021; 11: 12469
- 30 For a seminal report on α-boryl nucleophiles, see: Knochel P. J. Am. Chem. Soc. 1990; 112: 7431
- 31a Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
- 31b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 32 Xu Y, Zhang M, Oestreich M. ACS Catal. 2022; 12: 10546
- 33 For a non-asymmetric example employing electrochemistry, see: Zhang W, Lu L, Zhang W, Wang Y, Ware SD, Mondragon J, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature 2022; 604: 292
For reviews on reductive cross-coupling, see:
For a review on enantioselective reductive cross-coupling, see:
For selected reviews on enantioconvergent cross-coupling, see:
For selected books and reviews on organosilanes, see:
For a selected book and a review on organoboranes, see:
For key reports employing geminally halogenated electrophiles, see:
For key reports employing α-sulfur- and α-phosphorus-substituted electrophiles, see:
For key reports employing α-trifluoromethyl-substituted electrophiles, see:
For monographs and reviews on the Kumada reaction, see:
For seminal reports on kinetic resolution of secondary Grignard reagents by nickel-catalyzed cross-coupling, see:
For selected reports on the mechanism of cross-electrophile couplings, see:
For reports on mechanism of cross-coupling, see:
For selected reviews on dual transition-metal/photoredox-catalyzed cross-coupling, see: