Subscribe to RSS
DOI: 10.1055/a-2009-8219
Synthesis and Properties of Methylene-Bridged [6]Cyclo-2,6-naphthylene
This work was supported by JSPS KAKENHI (grants nos. 19H05463 to K.I., and 19K15537 and 22K14677 to A.Y.) and by CREST (JPMJCR19R1 to A.Y.) and PRESTO (JPMJPR22Q9 to A.Y.) programs from JST.
Abstract
A novel structurally constrained nanobelt, methylene-bridged [6]cyclo-2,6-naphthylene ([6]MCN), has been synthesized by the nickel-mediated intramolecular aryl–aryl coupling of a triflated prism[6]arene. The structural and electronic properties of [6]MCN were revealed through NMR studies and photophysical measurements. In contrast to methylene-bridged [6]cycloparaphenylene, our previously synthesized benzene-based analogue, [6]MCN has a low strain energy (77.4 kcal·mol–1) and displays bright fluorescence (Φ = 0.20).
Key words
cycloparaphenylenes - cyclonaphthylenes - molecular nanocarbons - carbon nanobelts - methylene-bridged nanobelts - prism[6]arenesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2009-8219.
- Supporting Information
Publication History
Received: 01 December 2022
Accepted after revision: 09 January 2023
Accepted Manuscript online:
09 January 2023
Article published online:
02 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Lewis SE. Chem. Soc. Rev. 2015; 44: 2221
- 1b Guo Q.-H, Qiu Y, Wang M.-X, Stoddart JF. Nat. Chem. 2021; 13: 402
- 1c Li Y, Kono H, Maekawa T, Segawa Y, Yagi A, Itami K. Acc. Mater. Res. 2021; 2: 681
- 2a Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646
- 2b Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K. Angew. Chem. Int. Ed. 2009; 48: 6112
- 2c Yamago S, Watanabe Y, Iwamoto T. Angew. Chem. Int. Ed. 2010; 49: 757
- 3 Sisto TJ, Zakharov LN, White BM, Jasti R. Chem. Sci. 2016; 7: 3681
- 4 Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science 2017; 356: 172
- 5a Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. J. Am. Chem. Soc. 2018; 140: 10054
- 5b Bergman HM, Kiel GR, Handford RC, Liu Y, Tilley TD. J. Am. Chem. Soc. 2021; 143: 8619
- 6 Cheung KY, Gui S, Deng C, Liang H, Xia Z, Liu Z, Chi L, Miao Q. Chem 2019; 5: 838
- 7a Han Y, Dong S, Shao J, Fan W, Chi C. Angew. Chem. Int. Ed. 2020; 60: 2658
- 7b Cheung KY, Watanabe K, Segawa Y, Itami K. Nat. Chem. 2021; 13: 255
- 7c Xia Z, Pun SH, Chen H, Miao Q. Angew. Chem. Int. Ed. 2021; 60: 10311
- 8a Leuninger J, Trimpin S, Räder H.-J, Müllen K. Macromol. Chem. Phys. 2001; 202: 2832
- 8b Wang J, Miao Q. Org. Lett. 2019; 21: 10120
- 8c Xie J, Li X, Wang S, Li A, Jiang L, Zhu K. Nat. Commun. 2020; 11: 3348
- 8d Tan M.-L, Guo Q.-H, Wang X.-Y, Shi T.-H, Zhang Q, Hou S.-K, Tong S, You J, Wang M.-X. Angew. Chem. Int. Ed. 2020; 59: 23649
- 8e Zhang F, Du X.-S, Zhang D.-W, Wang Y.-F, Lu HY, Chen C.-F. Angew. Chem. Int. Ed. 2021; 60: 15291
- 8f Zhu J, Han Y, Ni Y, Li G, Wu J. J. Am. Chem. Soc. 2021; 143: 2716
- 8g Sato H, Suizu R, Kato T, Yagi A, Segawa Y, Awaga K, Itami K. Chem. Sci. 2022; 13: 9947
- 9a Ogoshi T, Kanai S, Fujinami S, Yamagishi T.-a, Nakamoto Y. J. Am. Chem. Soc. 2008; 130: 5022
- 9b Ogoshi T, Ueshima N, Akutsu T, Yamafuji D, Furuta T, Sakakibara E, Yamagishi T.-a. Chem. Commun. 2014; 50: 5774
- 10 Li Y, Segawa Y, Yagi A, Itami K. J. Am. Chem. Soc. 2020; 142: 12850
- 11a Yagi A, Segawa Y, Itami K. J. Am. Chem. Soc. 2012; 134: 2962
- 11b Sun Z, Sarkar P, Suenaga T, Sato S, Isobe H. Angew. Chem. Int. Ed. 2015; 54: 12800
- 11c Okada K, Yagi A, Segawa Y, Itami K. Chem. Sci. 2017; 8: 661
- 11d Jia H, Gao Y, Huang Q, Cui S, Du P. Chem. Commun. 2018; 54: 988
- 12a Della Sala P, Del Regno R, Talotta C, Capobianco A, Hickey N, Geremia S, De Rosa M, Spinella A, Soriente A, Spinella A, Neri P, Gaeta C. J. Am. Chem. Soc. 2020; 142: 1752
- 12b Del Regno R, Della Sala P, Picariello D, Talotta C, Spinella A, Neri P, Gaeta C. Org. Lett. 2021; 23: 8143
- 12c Della Sala P, Del Regno R, Marino LD, Calabrese C, Palo C, Talotta C, Geremia S, Hickey N, Capobianco A, Neri P, Gaeta C. Chem. Sci. 2021; 12: 9952
- 13 Segawa Y, Yagi A, Ito H, Itami K. Org. Lett. 2016; 18: 1430
- 14 [6]MCN A 300-mL two-necked round-bottomed flask equipped with a magnetic stirrer bar and filled with N2 gas was charged with 1 (2.00 g, 1.94 mmol), prepared by the reported procedure,12b together with CH2Cl2 (300 mL), pyridine (2.81 mL, 34.9 mmol), and triflic anhydride (5.08 mL, 31.0 mmol) at 0 °C. The mixture was slowly warmed to rt and stirred for 24 h. H2O (50 mL) was then slowly added at 0 °C, and the mixture was concentrated to remove CH2Cl2. The precipitate was collected by filtration, washed with copious amounts of H2O, collected, and dried under a high vacuum to afford a purple solid. In an argon-filled glovebox, a second dry 300-mL two-necked round-bottomed flask equipped with a magnetic stirrer bar was charged with 2,2′-bipyridyl (843 mg, 5.40. mmol) and Ni2(cod)2 (1.49 g, 5.40 mmol), followed by NMP (150 mL. The resulting mixture was stirred for 40 min at rt until a dark-purple solution of the complex formed. About 3 min later, the product of the triflation reaction (1.18 g, 450 μmol) was added. The resulting mixture was stirred at 80 °C for 18 h then cooled to rt. Toluene (100 mL) and sat. aq NH4Cl (200 mL) were added, and the organic layer was separated and washed with brine (3 × 300 mL). The organic layer was dried (Na2SO4), filtered, and concentrated, and the crude product was purified by precipitation through the gradual addition of an anhyd 1:2 toluene–hexane mixture to a solution of the crude product in anhyd toluene at about 20 °C to give a yellow solid; yield: 7.5 mg (1% over two steps from 1). 1H NMR (600 MHz, CD2Cl2): δ = 7.70 (d, J = 8.9 Hz, 12 H), 7.64 (d, J = 8.9 Hz, 12 H), 4.51 (d, J = 20.6 Hz, 6 H), 3.76 (d, J = 20.6 Hz, 6 H). 13C NMR (150 MHz, CD2Cl2): δ = 145.73, 140.68,130.51, 124.80, 121.42, 37.72. HRMS (MALDI-TOF): m/z [M+] calcd for C66H36: 828.2812; found: 828.2835.
For reports on cyclonaphthylenes, see: