Subscribe to RSS
DOI: 10.1055/a-2009-9809
Ouratea spectabilis and its Biflavanone Ouratein D Exert Potent Anti-inflammatory Activity in MSU Crystal-induced Gout in Mice
Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 310755/2017-4Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 465425/2014-3
Abstract
Gouty arthritis (GA) is an inflammatory arthritis triggered by the deposition of monosodium urate monohydrate (MSU) crystals, causing pain, inflammation, and joint damage. Several drugs are currently employed to manage acute flares of GA, but they either have limited effectiveness or induce severe adverse reactions. Ouratea spectabilis is traditionally used in Brazil to treat gastric ulcers and rheumatism. The ethanolic extract of O. spectabilis stems (OSpC) and four biflavanones (ouratein A – D) isolated thereof were evaluated in a murine model of GA induced by the injection of MSU crystals. The underlying mechanism of action of ouratein D was investigated in vitro in cell cultures by measurement of IL-1β levels by ELISA and Western blot analysis. The administration of OSpC (10, 30 or 100 mg/Kg, p. o.) reduced the migration of total inflammatory cells, monocytes, and neutrophils and diminished the levels of IL-1β and CXCL1 in the synovial tissue. Among the tested compounds, only ouratein D (1 mg/Kg) reduced the migration of the inflammatory cells and it was shown to be active up to 0.01 mg/Kg (equivalent to 0.34 nM/Kg, p. o.). Treatment of pre-stimulated THP-1 cells (differentiated into macrophages) or BMDMs with ouratein D reduced the release of IL-1β in both macrophage lines. This biflavanone reduced the activation of caspase-1 (showed by the increase in the cleaved form) in supernatants of cultured BMDMs, evidencing its action in modulating the inflammasome pathway. The obtained results demonstrate the anti-gout properties of O. spectabilis and point out ouratein D as the bioactive component of the assayed extract.
Key words
Ouratea spectabilis - Ochnaceae - gouty arthritis - biflavanones - ouratein D - caspase-1 inhibitorsPublication History
Received: 30 August 2022
Accepted after revision: 10 January 2023
Accepted Manuscript online:
10 January 2023
Article published online:
15 March 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol 2020; 16: 380-390
- 2 Singh JA, Gaffo A. Gout epidemiology and comorbidities. Semin Arthritis Rheum 2020; 50: S11-S16
- 3 Dalbeth N, Choi HK, Joosten LAB, Khanna PP, Matsuo H, Perez-Ruiz F, Stamp LK. Gout. Nat Rev Dis Primers 2019; 5: 69
- 4 Martillo MA, Nazzal L, Crittenden DB. The crystallization of monosodium urate. Curr Rheumatol Rep 2014; 16: 1-13
- 5 Anderton H, Wicks IP, Silke J. Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nat Rev Rheumatol 2020; 16: 496-513
- 6 Kingsbury SR, Conaghan PG, McDermott MF. The role of the NLRP3 inflammasome in gout. J Inflamm Res 2011; 4: 39-49
- 7 Xu Z, Zhang R, Zhang D, Yao J, Shi R, Tang Q, Wang L. Peptic ulcer hemorrhage combined with acute gout: Analyses of treatment in 136 cases. Int J Clin Exp Med 2015; 8: 6193-6199
- 8 Azevedo VF, Lopes MP, Catholino NM, Paiva ES, Araújo VA, Pinheiro GRC. Critical revision of the medical treatment of gout in Brazil. Rev Bras Reumatol Engl Ed 2017; 57: 346-355
- 9 Yamanaka HTG. Essence of the revised guideline for the management of hyperuricemia and gout. Japan Med Assoc J 2012; 55: 324-329
- 10 Pillinger MH, Mandell BF. Therapeutic approaches in the treatment of gout. Semin Arthritis Rheum 2020; 50: S24-S30
- 11 Daoudi NE, Bouhrim M, Ouassou H, Bnouham M. Medicinal plants as a drug alternative source for the antigout therapy in Morocco. Scientifica (Cairo) 2020; 2020: 8637583
- 12 Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel) 2015; 2: 251-286
- 13 Chacon RG, Yamamoto K, Proença C, Cavalcanti TB, Graciano-Ribeiro D. A distinctive new species of Ouratea (Ochnaceae) from Jalapão Region, Tocantins, Brazil. Novon 2008; 18: 397-404
- 14 Mecina GF, Santos VHM, Dokkedal AL, Saldanha LL, Silva LP, Silva RMG. Phytotoxicity of extracts and fractions of Ouratea spectabilis (Mart. Ex Engl.) Engl. (Ochnaceae). S Afr J Bot 2014; 95: 174-180
- 15 Felício J, Gonçalez E, Braggio MM, Costantino L, Albasini A, Lins AP. Inhibition of lens aldose reductase by biflavones from Ouratea spectabilis . Planta Med 1995; 61: 217-220
- 16 Simoni IC, Felicio JD, Gonçalez E, Rossi MH. Avaliação da citotoxicidade de biflavonoides isolados de Ouratea spectabilis (Ochnaceae) em córnea de coelho SIRC. Arq Inst Biol 2022; 69: 95-97
- 17 Rocha MP, Campana PRV, Pádua RM, Souza Filho JD, Ferreira D, Braga FC. (3, 3″)-Linked biflavanones from Ouratea spectabilis and their effects on the release of proinflammatory cytokines in THP-1 cells. J Nat Prod 2020; 83: 1891-1898
- 18 Boucher D, Monteleone M, Coll RC, Chen KW, Ross CM, Teo JL, Gomez GA, Holley CL, Bierschenk D, Stacey KJ, Yap AS, Bezbradica JS, Schroder K. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J Exp Med 2018; 215 (03) 827-840
- 19 Carbonari KA, Ferreira EA, Rebello JM, Felipe KB, Rossi MH, Felício JD, Filho DW, Yunes RA, Pedrosa RC. Free-radical scavenging by Ouratea parviflora in experimentally-induced liver injuries. Redox Rep 2006; 11: 124-130
- 20 Campana PRV, Azevedo EPC, Amaral F, Pinho V, Ferreira D, Teixeira MM, Braga FC. In vitro and in vivo anti-inflammatory activity of Ouratea semisserrata . Planta Med 2016; 82: PB8
- 21 Zhang X, Liu Y, Deng G, Huang B, Kai G, Chen K, Li J. A purified biflavonoid extract from Selaginella moellendorffii alleviates gout arthritis via NLRP3/ASC/caspase-1 axis suppression. Front Pharmacol 2021; 12: 1-14
- 22 Silva CR, Frohlich JK, Oliveira SM, Cabreira TN, Rossato MF, Trevisan G, Froeder AL, Bochi GV, Moresco RN, Athayde ML, Ferreira J. The antinociceptive and anti-inflammatory effects of the crude extract of Jatropha isabellei in a rat gout model. J Ethnopharmacol 2013; 145: 205-213
- 23 Lee YM, Shon EJ, Kim OS, Kim DS. Effects of Mollugo pentaphylla extract on monosodium urate crystal-induced gouty arthritis in mice. BMC Complement Altern Med 2017; 17: 447
- 24 Jeong JH, Hong S, Kwon OC, Ghang B, Hwang I, Kim YG, Lee CK, Yoo B. CD14+ cells with the phenotype of infiltrated monocytes consist of distinct populations characterized by anti-inflammatory as well as pro-inflammatory activity in gouty arthritis. Front Immunol 2017; 8: 1260
- 25 Jeong JH, Jung JH, Lee JS, Oh JS, Kim YG, Lee CK, Yoo B, Hong S. Prominent inflammatory features of monocytes/macrophages in acute calcium pyrophosphate crystal arthritis: a comparison with acute gouty arthritis. Immune Netw 2019; 19: e21
- 26 Kadiyoran C, Zengin O, Cizmecioglu HA, Tufan A, Kucuksahin O, Cure MC, Cure E, Kucuk A, Ozturk MA. Monocyte to lymphocyte ratio, neutrophil to lymphocyte ratio, and red cell distribution width are the associates with gouty arthritis. Acta Med 2019; 62: 99-104
- 27 Cronstein BN, Terkeltaub R. The inflammatory process of gout and its treatment. Arthritis Res Ther 2006; 8: S3
- 28 Amaral FA, Costa VV, Tavares LD, Sachs D, Coelho FM, Fagundes CT, Soriani FM, Silveira TN, Cunha LD, Zamboni DS, Quesniaux V, Peres RS, Cunha TM, Cunha FQ, Ryffel B, Souza DG, Teixeira MM. NLRP3 inflammasome-mediated neutrophil recruitment and hypernociception depend on leukotriene B (4) in a murine model of gout. Arthritis Rheumatol 2012; 64: 474-484
- 29 Rauf SMA, Arvidsson PI, Albericio F, Govender T, Maguire GE, Kruger HG, Honarparvar B. The effect of N-methylation of amino acids (Ac-X-OMe) on solubility and conformation: A DFT study. Org Biomol Chem 2015; 13: 9993-10006
- 30 Alam S, Khan F. Virtual screening, docking, ADMET and system pharmacology studies on Garcinia caged xanthone derivatives for anticancer activity. Sci Rep 2018; 8: 5524
- 31 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46: 3-26
- 32 Ferraz CR, Carvalho TT, Manchope MF, Artero NA, Rasquel-Oliveira FS, Fattori V, Casagrande R, Verri WA. Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules 2020; 25: 762
- 33 Ling X, Bochu W. A review of phytotherapy of gout: Perspective of new pharmacological treatments. Pharmazie 2014; 69: 243-256
- 34 Ruiz-Miyazawa KW, Staurengo-Ferrari L, Mizokami SS, Domiciano TP, Vicentini FTMC, Camilios-Neto D, Pavanelli WR, Pinge-Filho P, Amaral FA, Teixeira MM, Casagrande R, Verri WA. Quercetin inhibits gout arthritis in mice: Induction of an opioid-dependent regulation of inflammasome. Inflammopharmacology 2017; 25: 555-570
- 35 Ruiz-Miyazawa KW, Borghi SM, Pinho-Ribeiro FA, Staurengo-Ferrari L, Fattori V, Fernandes GSA, Verri WA. The citrus flavanone naringenin reduces gout-induced joint pain and inflammation in mice by inhibiting the activation of NFκB and macrophage release of IL-1β . J Func Foods 2018; 48: 106-116
- 36 Chen F, Hao L, Zhu S, Yang X, Shi W, Zheng K, Chen H. Potential adverse effects of dexamethasone therapy on COVID-19 patients: review and recommendations. Infect Dis Ther 2021; 10: 1907-1931
- 37 IASP. 2022. Guidelines of the International Association for the Study of Pain. Accessed April 18, 2022 at: https://www.iasp-pain.org/resources/guidelines/
- 38 Galvão I, de Carvalho RVH, Vago JP, Silva ALN, Carvalho TG, Antunes MM, Teixeira MM. The role of annexin A1 in the modulation of the NLRP3 inflammasome. Immunology 2020; 160: 78-89
- 39 Vago JP, Sugimoto MA, Lima KM, Negreiros-Lima GL, Baik N, Teixeira MM, Perretti M, Parmer RJ, Miles LA, Sousa LP. Plasminogen and the plasminogen receptor, Plg-RKT, regulate macrophage phenotypic, and functional changes. Front Immunol 2019; 10: 1458
- 40 Zaidan I, Tavares LP, Sugimoto MA, Lima KM, Negreiros-Lima GL, Teixeira LC, Miranda TC, Valiate BV, Cramer A, Vago JP, Campolina-Silva GH, Souza JA, Grossi LC, Pinho V, Campagnole-Santos MJ, Santos RA, Teixeira MM, Galvão I, Sousa LP. Angiotensin-(1–7)/MasR axis promotes migration of monocytes/macrophages with a regulatory phenotype to perform phagocytosis and efferocytosis. JCI Insight 2022; 7: e147819