Subscribe to RSS
DOI: 10.1055/a-2014-2936
Deoxygenative Alkylboration of Aldehydes to Synthesize Versatile Secondary α,α-Dialkyl Boronates
We thank the Open Research Fund of Key Laboratory of the Ministry of Education for Advanced Catalysis Materials and Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Zhejiang Normal University (KLMEACM202106), National Natural Science Foundation of China (Grant No. 22071183), and the Science and Technology Commission of Shanghai Municipality (19DZ2271500) for financial support.
Abstract
By merging nickel catalysis and photochemistry, we developed a deoxygenative alkylboration of aldehydes via a deoxygenative difunctionalization of carbonyls strategy. This three-component reaction between alkyl halides, B2Pin2, and aldehydes represents one of the most efficient methods to furnish the versatile secondary α,α-dialkyl boronates. A series of deoxygenative difunctionalization skeletons can be gained from the products based on the carbon–boron bond transformation. In addition, deoxygenative arylboration of aldehydes was achieved.
Key words
deoxygenative difunctionalization of carbonyls - C–O bond coupling - metallaphotoredox - nickel - cross-couplingPublication History
Received: 06 January 2023
Accepted after revision: 16 January 2023
Accepted Manuscript online:
16 January 2023
Article published online:
09 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Rappoport Z, Marek I. Functionalized Organomagnesium Compounds: Synthesis and Reactivity. In The Chemistry of Organomagnesium Compounds. Wiley-VCH; Weinheim: 2008: 511
- 1b Maercker A. Org. React. 1965; 14: 270
- 2a He Y, Wang Y, Li S.-J, Lan Y, Wang X, Yang Y. Angew. Chem. Int. Ed. 2022; 61: e202115497
- 2b Li Z, Zhao F, Ou W, Huang P.-Q, Wang X. Angew. Chem. Int. Ed. 2021; 60: 26604
- 2c Onishi Y, Ogawa D, Yasuda M, Baba A. J. Am. Chem. Soc. 2002; 124: 13690
- 3a Li J, Huang C.-Y, Li C.-J. Angew. Chem. Int. Ed. 2022; 61: e202112770
- 3b Xia Y, Wang J. J. Am. Chem. Soc. 2020; 142: 10592
- 4a Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
- 4b Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
- 4c Dai X.-J, Li C.-C, Li C.-J. Chem. Soc. Rev. 2021; 50: 10733
- 4d Li C.-J, Huang J, Dai X.-J, Wang H, Chen N, Wei W, Zeng H, Tang J, Li C, Zhu D, Lv L. Synlett 2019; 30: 1508
- 5a Wang L, Zhang T, Sun W, He Z, Xia C, Lan Y, Liu C. J. Am. Chem. Soc. 2017; 139: 5257
- 5b Shi D, Wang L, Xia C, Liu C. Angew. Chem. Int. Ed. 2018; 57: 10318
- 5c Yang Y, Tsien J, David AB, Hughes JM. E, Merchant RR, Qin T. J. Am. Chem. Soc. 2021; 143: 471
- 6 Hall DG. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine, Vol. 1 and 2. Wiley-VCH; Weinheim: 2006
- 7a Brown HC. Hydroboration. W. A. Benjamin Inc; New York: 1962
- 7b Knights EF, Brown HC. J. Am. Chem. Soc. 1968; 90: 5280
- 7c Knights EF, Brown HC. J. Am. Chem. Soc. 1968; 90: 5281
- 7d Brown HC, Knights EF, Scouten CG. J. Am. Chem. Soc. 1974; 96: 7765
- 8a Yang C.-T, Zhang Z.-Q, Tajuddin H, Wu C.-C, Liang J, Liu J.-H, Fu Y, Czyzewska M, Steel PG, Marder TB, Liu L. Angew. Chem. Int. Ed. 2012; 51: 528
- 8b Dudnik AS, Fu GC. J. Am. Chem. Soc. 2012; 134: 10693
- 8c Bose SK, Fucke K, Liu L, Steel PG, Marder TB. Angew. Chem. Int. Ed. 2014; 53: 1799
- 8d Atack TC, Cook SP. J. Am. Chem. Soc. 2016; 138: 6139
- 8e Fawcett A, Pradeilles J, Wang Y, Mutsuga T, Myers EL, Aggarwal VK. Science 2017; 357: 283
- 8f Li C, Wang J, Barton LM, Yu S, Tian M, Peters DS, Kumar M, Yu AW, Johnson KA, Chatterjee AK, Yan M, Baran PS. Science 2017; 356: eaam7355
- 8g Cheng Y, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed. 2018; 57: 16832
- 8h Hu J, Wang G, Li S, Shi Z. Angew. Chem. Int. Ed. 2018; 57: 15227
- 8i Wu J, He L, Noble A, Aggarwal VK. J. Am. Chem. Soc. 2018; 140: 10700
- 8j Friese FW, Studer A. Angew. Chem. Int. Ed. 2019; 58: 9561
- 8k Wu J, Bär RM, Guo L, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2019; 58: 18830
- 8l Zhang L, Wu Z.-Q, Jiao L. Angew. Chem. Int. Ed. 2020; 59: 2095
- 8m Chen C, Wang Z.-J, Lu H, Zhao Y, Shi Z. Nat. Commun. 2021; 12: 4526
- 8n Wang B, Peng P, Ma W, Liu Z, Huang C, Cao Y, Hu P, Qi X, Lu Q. J. Am. Chem. Soc. 2021; 143: 12985
- 8o Wang X, Cui P, Xia C, Wu L. Angew. Chem. Int. Ed. 2021; 60: 12298
- 9a Hong K, Liu X, Morken JP. J. Am. Chem. Soc. 2014; 136: 10581
- 9b Zhang L, Lovinger GJ, Edelstein EK, Szymaniak AA, Chierchia MP, Morken JP. Science 2016; 351: 70
- 9c Schmidt J, Choi J, Liu AT, Slusarczyk M, Fu GC. Science 2016; 354: 1265
- 9d Murray SA, Liang MZ, Meek SJ. J. Am. Chem. Soc. 2017; 139: 14061
- 9e Sun S.-Z, Böjesson M, Martin-Montero R, Martin R. J. Am. Chem. Soc. 2018; 140: 12765
- 9f Bera S, Hu X. Angew. Chem. Int. Ed. 2019; 58: 13854
- 9g Sun S.-Z, Talavera L, Spieß P, Day CS, Martin R. Angew. Chem. Int. Ed. 2021; 60: 11740
- 9h Bera S, Mao R, Hu X. Nat. Chem. 2021; 13: 270
- 9i Zhang W, Lu L, Zhang W, Wang Y, Ware SD, Mondragon J, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature 2022; 604: 292
- 10a Su W, Gong T.-J, Lu X, Xu M.-Y, Yu C.-G, Xu Z.-Y, Yu H.-Z, Xiao B, Fu Y. Angew. Chem. Int. Ed. 2015; 54: 12957
- 10b Joung S, Bergmann AM, Brown MK. Chem. Sci. 2019; 10: 10944
- 10c Akiyama S, Oyama N, Endo T, Kubota K, Ito H. J. Am. Chem. Soc. 2021; 143: 5260
- 10d Cheng Y, Mück-Lichtenfeld C, Studer A. J. Am. Chem. Soc. 2018; 140: 6221
- 10e Zhang W, Zou Z, Zhao W, Lu S, Wu Z, Huang M, Wang X, Wang Y, Liang Y, Zhu Y, Zheng Y, Pan Y. Nat. Commun. 2020; 11: 2572
- 10f Ding C, Ren Y, Sun C, Long J, Yin G. J. Am. Chem. Soc. 2021; 143: 20027
- 10g Li Y, Pang H, Wu D, Li Z, Wang W, Wei H, Fu Y, Yin G. Angew. Chem. Int. Ed. 2019; 58: 8872
- 11 Xu W, Zheng P, Zhou J, Hu Z, XU T. Angew. Chem. Int. Ed. 2022; 61: e202214213
- 12a Laitar DS, Tsui EY, Sadighi JP. J. Am. Chem. Soc. 2006; 128: 11036
- 12b Kubota K, Yamamoto E, Ito H. J. Am. Chem. Soc. 2015; 137: 420
- 12c Kubota K, Osaki S, Jin M, Ito H. Angew. Chem. Int. Ed. 2017; 56: 6646
- 13 Zheng P, Xu W, Wang H, Wang D, Wu X, XU T. ACS Catal. 2022; 12: 14926
For some selective examples, see: