Synthesis 2023; 55(15): 2285-2303 DOI: 10.1055/a-2017-4868
short review
Special Issue dedicated to Prof. David A. Evans
Recent Developments of Palladium- and Rhodium-Catalyzed β-Carbon Elimination Strategies
,
Bijan Mirabi‡
,
We thank the University of Toronto (UofT), the Natural Science and Engineering Research Council (NSERC), Alphora Research Inc. and Kennarshore Inc. for financial support. A.D.M thanks NSERC for an NSERC Vanier fellowship. B. M. thanks NSERC for a CGS D fellowship.
Abstract
The activation of C–C bonds via transition metal catalysis has become an increasingly popular strategy in organic synthesis. An emerging method to cleave C–C bonds is to facilitate a β-carbon elimination using rhodium or palladium catalysis. This elementary step typically relies on a thermodynamic driving force, such as the relief of ring strain or steric strain. More recently, the use of neopentyl metal species or chelation assistance has enabled this difficult transformation. This review will cover recent synthetic applications of β-carbon eliminations under palladium and rhodium catalysis.
1 Introduction
2 Chelation-Assisted β-Carbon Elimination Reactions
3 β-Carbon Elimination from Neopentyl–Pd Species
4 Pd-Catalyzed Catellani Reactions
5 β-Carbon Elimination Reactions of Cyclopropanes
6 Conclusion
Key words
catalysis -
β-carbon elimination -
palladium -
rhodium -
reversible
Publication History
Received: 11 November 2022
Accepted after revision: 22 January 2023
Accepted Manuscript online: 22 January 2023
Article published online: 16 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
McDonald TR,
Mills LR,
West MS,
Rousseaux SA. L.
Chem. Rev. 2021; 121: 3
2
Fumagalli G,
Stanton S,
Bower JF.
Chem. Rev. 2017; 117: 9404
3
Song F,
Gou T,
Wang BQ,
Shi ZJ.
Chem. Soc. Rev. 2018; 47: 7078
4
Miura M,
Satoh T.
Top. Organomet. Chem. 2005; 14: 1
5
Zhao P,
Hartwig JF.
Organometallics 2008; 27: 4749
6
Zhao P,
Hartwig JF.
J. Am. Chem. Soc. 2005; 127: 11618
7
Lutz MD. R,
Morandi B.
Chem. Rev. 2021; 121: 300
8
Wang J,
Dong G.
Chem. Rev. 2019; 119: 7478
9
Onodera S,
Ishikawa S,
Kochi T,
Kakiuchi F.
J. Am. Chem. Soc. 2018; 140: 9788
10
Onodera S,
Togashi R,
Ishikawa S,
Kochi T,
Kakiuchi F.
J. Am. Chem. Soc. 2020; 142: 7345
11
Tan G,
Das M,
Maisuls I,
Strassert CA,
Glorius F.
Angew. Chem. Int. Ed. 2021; 60: 15650
12
Grigg R,
Sridharan V.
J. Organomet. Chem. 1999; 576: 65
13
Ping Y,
Pan Q,
Guo Y,
Liu Y,
Li X,
Wang M,
Kong W.
J. Am. Chem. Soc. 2022; 144: 11626
14
Gong J,
Wang Q,
Zhu J.
Angew. Chem. Int. Ed. 2022; 61: e202211470
15
Ye J,
Shi Z,
Sperger T,
Yasukawa Y,
Kingston C,
Schoenebeck F,
Lautens M.
Nat. Chem. 2017; 9: 361
16
Azizollahi H,
Mehta VP,
García-López JA.
Chem. Commun. 2019; 55: 10281
17a
Liu C,
Shi WY,
Ding YN,
Zheng N,
Liang YM.
Chem. Commun. 2022; 58: 3186
17b
Huang Q,
Fazio A,
Dai G,
Campo MA,
Larock RC.
J. Am. Chem. Soc. 2004; 126: 7460
17c
Piou T,
Neiville L,
Zhu J.
Angew. Chem. Int. Ed. 2012; 51: 11561
17d
Piou T,
Bunescu A,
Wang Q,
Neuville L,
Zhu J.
Angew. Chem. Int. Ed. 2013; 52: 12385
18
Newman SG,
Lautens M.
J. Am. Chem. Soc. 2010; 132: 11416
19
Newman SG,
Lautens M.
J. Am. Chem. Soc. 2011; 133: 1778
20
Roy AH,
Hartwig JF.
Organometallics 2004; 23: 1533
21
Marchese AD,
Durant AG,
Reid CM,
Jans C,
Arora R,
Lautens M.
J. Am. Chem. Soc. 2022; 144: 20554
22
Marchese AD,
Mirabi B,
Johnson CE,
Lautens M.
Nat. Chem. 2022; 14: 398
23
Xu B,
Ji D,
Wu L,
Zhou L,
Liu Y,
Zhang ZM,
Zhang J.
Chem 2022; 8: 836
24
Kang T,
Fu Y,
Li-Matsuura R,
Liu AL,
Jankins TC,
Rheingold AL,
Bailey JB,
Gembicky M,
Liu P,
Engle KM.
Organometallics 2023; 42: 11
25
Matsuura R,
Jankins TC,
Hill DE,
Yang KS,
Gallego GM,
Yang S,
He M,
Wang F,
Marsters RP,
McAlpine I,
Engle KM.
Chem. Sci. 2018; 9: 8363
26
Catellani M,
Frignani F,
Rangoni A.
Angew. Chem. Int. Ed. 1997; 36: 119
27
Catellani M,
Chiusoli GP.
J. Organomet. Chem. 1992; 425: 151
28
Chai DI,
Thansandote P,
Lautens M.
Chem. Eur. J. 2011; 17: 8175
29
Markies BA,
Wijkens A,
Kooijman A,
Spek L,
Boersma B,
van Koten G.
J. Chem. Soc., Chem. Commun. 1992; 1420
30
Catellani M,
Mealli C,
Motti E,
Paoli P,
Perez-Carreño E,
Pregosin PS.
J. Am. Chem. Soc. 2002; 124: 4336
31
Jiao L,
Bach T.
J. Am. Chem. Soc. 2011; 133: 12990
32
Lautens M,
Piguel S.
Angew. Chem. Int. Ed. 2000; 39: 1045
33
Sun M,
Chen X,
Feng Z,
Deng G,
Yang Y,
Liang Y.
Org. Chem. Front. 2021; 8: 6535
34
Rago AJ,
Dong G.
Org. Lett. 2021; 23: 3755
35
Li J,
Yang Y,
Liu Y,
Liu Q,
Zhang L,
Li X,
Dong Y,
Liu H.
Org. Lett. 2021; 23: 2988
36
Ding YN,
Huang YC,
Shi WY,
Zheng N,
Wang CT,
Chen X,
An Y,
Zhang Z,
Liang YM.
Org. Lett. 2021; 23: 5641
37
Liu X,
Wang J,
Dong G.
J. Am. Chem. Soc. 2021; 143: 9991
38
Zhang BS,
Jia WY,
Gou XY,
Yang YH,
Wang F,
Wang YM,
Wang XC,
Quan ZJ.
Org. Lett. 2022; 24: 2104
39
Chen CT.
Chem. Mater. 2004; 16: 4389
40
Wu Z,
Xu X,
Wang J,
Dong G.
Science 2021; 374: 734
41
Wang CT,
Li M,
Ding YN,
Wei WX,
Zhang Z,
Gou XY,
Jiao RQ,
Wen YT,
Liang YM.
Org. Lett. 2021; 23: 786
42
Han M.-L,
Chen J.-J,
Xu H,
Huang Z.-C,
Huang W,
Liu Y.-W,
Wang X,
Liu M,
Guo Z.-Q,
Dai H.-X.
JACS Au 2021; 1: 1877
43
Fu Y,
Zhang YX,
Guo LL.
J. Org. Chem. 2021; 86: 17437
44
Catellani M,
Motti E,
Baratta S.
Org. Lett. 2001; 3: 3611
45
Bai M,
Jia S,
Zhang J,
Cheng HG,
Cong H,
Liu S,
Huang Z,
Huang Y,
Chen X,
Zhou Q.
Angew. Chem. Int. Ed. 2022; 61: e202205245
46
Du Y,
Chen S,
Huang A,
Chen Y,
Liu YL,
Song G,
Tang RY,
Xu H,
Yao G,
Li Z.
Org. Lett. 2022; 24: 1341
47
Wu Z,
Dong G.
Angew. Chem. Int. Ed. 2022; 61: e202201239
48
Liu J,
Lin H,
Jiang H,
Huang L.
Org. Lett. 2022; 24: 484
49
Gao Q,
Wu C,
Deng S,
Li L,
Liu ZS,
Hua Y,
Ye J,
Liu C,
Cheng HG,
Cong H,
Jiao Y,
Zhou Q.
J. Am. Chem. Soc. 2021; 143: 7253
50
Zhang BS,
Wang F,
Gou XY,
Yang YH,
Jia WY,
Liang YM,
Wang XC,
Li Y,
Quan ZJ.
Org. Lett. 2021; 23: 7518
51
Li R,
Dong G.
Angew. Chem. Int. Ed. 2021; 60: 26184
52
Tsukada N,
Shibuya A,
Nakamura I,
Kitahara H,
Yamamoto Y.
Tetrahedron 1999; 55: 8833
53
Lautens M,
Meyer C,
Lorenz A.
J. Am. Chem. Soc. 1996; 118: 10676
54
Bessmertnykh AG,
Blinov KA,
Grishin YK,
Donskaya NA,
Beletskaya IP.
Tetrahedron Lett. 1995; 36: 7901
55
Wurzer N,
Klimczak U,
Babl T,
Fischer S,
Angnes RA,
Kreutzer D,
Pattanaik A,
Rehbein J,
Reiser O.
ACS Catal. 2021; 11: 12019
56
Cohen A,
Kaushansky A,
Marek I.
JACS Au 2022; 2: 687
57
Wu M,
Wang S,
Wang Y,
Gao H,
Yi W,
Zhou Z.
Eur. J. Org. Chem. 2021; 2021: 5507
58
Zhu YQ,
Niu YX,
Hui LW,
He JL,
Zhu K.
Adv. Synth. Catal. 2019; 361: 2897
59
Singh A,
Dey A,
Volla CM. R.
J. Org. Chem. 2021; 86: 10474
60
Liu R,
Wei Y,
Shi M.
Chem. Commun. 2019; 55: 7558
61
Li Q,
Yuan X,
Li B,
Wang B.
Chem. Commun. 2020; 56: 1835
62
Shen Z,
Maksso I,
Kuniyil R,
Rogge T,
Ackermann L.
Chem. Commun. 2021; 57: 3668
63
Ramesh B,
Jeganmohan M.
J. Org. Chem. 2022; 87: 5668
64
Wang Q,
Zhi CL,
Lu PP,
Liu S,
Zhu X,
Hao XQ,
Song MP.
Adv. Synth. Catal. 2019; 361: 1253