Synthesis 2023; 55(15): 2285-2303
DOI: 10.1055/a-2017-4868
short review
Special Issue dedicated to Prof. David A. Evans

Recent Developments of Palladium- and Rhodium-Catalyzed β-Carbon Elimination Strategies

,
Bijan Mirabi
,
Mark Lautens
We thank the University of Toronto (UofT), the Natural Science and Engineering Research Council (NSERC), Alphora Research Inc. and Kennarshore Inc. for financial support. A.D.M thanks NSERC for an NSERC Vanier fellowship. B. M. thanks NSERC for a CGS D fellowship.


Abstract

The activation of C–C bonds via transition metal catalysis has become an increasingly popular strategy in organic synthesis. An emerging method to cleave C–C bonds is to facilitate a β-carbon elimination using rhodium or palladium catalysis. This elementary step typically relies on a thermodynamic driving force, such as the relief of ring strain or steric strain. More recently, the use of neopentyl metal species or chelation assistance has enabled this difficult transformation. This review will cover recent synthetic applications of β-carbon eliminations under palladium and rhodium catalysis.

1 Introduction

2 Chelation-Assisted β-Carbon Elimination Reactions

3 β-Carbon Elimination from Neopentyl–Pd Species

4 Pd-Catalyzed Catellani Reactions

5 β-Carbon Elimination Reactions of Cyclopropanes

6 Conclusion



Publication History

Received: 11 November 2022

Accepted after revision: 22 January 2023

Accepted Manuscript online:
22 January 2023

Article published online:
16 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 McDonald TR, Mills LR, West MS, Rousseaux SA. L. Chem. Rev. 2021; 121: 3
  • 2 Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
  • 3 Song F, Gou T, Wang BQ, Shi ZJ. Chem. Soc. Rev. 2018; 47: 7078
  • 4 Miura M, Satoh T. Top. Organomet. Chem. 2005; 14: 1
  • 5 Zhao P, Hartwig JF. Organometallics 2008; 27: 4749
  • 6 Zhao P, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 11618
  • 7 Lutz MD. R, Morandi B. Chem. Rev. 2021; 121: 300
  • 8 Wang J, Dong G. Chem. Rev. 2019; 119: 7478
  • 9 Onodera S, Ishikawa S, Kochi T, Kakiuchi F. J. Am. Chem. Soc. 2018; 140: 9788
  • 10 Onodera S, Togashi R, Ishikawa S, Kochi T, Kakiuchi F. J. Am. Chem. Soc. 2020; 142: 7345
  • 11 Tan G, Das M, Maisuls I, Strassert CA, Glorius F. Angew. Chem. Int. Ed. 2021; 60: 15650
  • 12 Grigg R, Sridharan V. J. Organomet. Chem. 1999; 576: 65
  • 13 Ping Y, Pan Q, Guo Y, Liu Y, Li X, Wang M, Kong W. J. Am. Chem. Soc. 2022; 144: 11626
  • 14 Gong J, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2022; 61: e202211470
  • 15 Ye J, Shi Z, Sperger T, Yasukawa Y, Kingston C, Schoenebeck F, Lautens M. Nat. Chem. 2017; 9: 361
  • 16 Azizollahi H, Mehta VP, García-López JA. Chem. Commun. 2019; 55: 10281
    • 17a Liu C, Shi WY, Ding YN, Zheng N, Liang YM. Chem. Commun. 2022; 58: 3186
    • 17b Huang Q, Fazio A, Dai G, Campo MA, Larock RC. J. Am. Chem. Soc. 2004; 126: 7460
    • 17c Piou T, Neiville L, Zhu J. Angew. Chem. Int. Ed. 2012; 51: 11561
    • 17d Piou T, Bunescu A, Wang Q, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2013; 52: 12385
  • 18 Newman SG, Lautens M. J. Am. Chem. Soc. 2010; 132: 11416
  • 19 Newman SG, Lautens M. J. Am. Chem. Soc. 2011; 133: 1778
  • 20 Roy AH, Hartwig JF. Organometallics 2004; 23: 1533
  • 21 Marchese AD, Durant AG, Reid CM, Jans C, Arora R, Lautens M. J. Am. Chem. Soc. 2022; 144: 20554
  • 22 Marchese AD, Mirabi B, Johnson CE, Lautens M. Nat. Chem. 2022; 14: 398
  • 23 Xu B, Ji D, Wu L, Zhou L, Liu Y, Zhang ZM, Zhang J. Chem 2022; 8: 836
  • 24 Kang T, Fu Y, Li-Matsuura R, Liu AL, Jankins TC, Rheingold AL, Bailey JB, Gembicky M, Liu P, Engle KM. Organometallics 2023; 42: 11
  • 25 Matsuura R, Jankins TC, Hill DE, Yang KS, Gallego GM, Yang S, He M, Wang F, Marsters RP, McAlpine I, Engle KM. Chem. Sci. 2018; 9: 8363
  • 26 Catellani M, Frignani F, Rangoni A. Angew. Chem. Int. Ed. 1997; 36: 119
  • 27 Catellani M, Chiusoli GP. J. Organomet. Chem. 1992; 425: 151
  • 28 Chai DI, Thansandote P, Lautens M. Chem. Eur. J. 2011; 17: 8175
  • 29 Markies BA, Wijkens A, Kooijman A, Spek L, Boersma B, van Koten G. J. Chem. Soc., Chem. Commun. 1992; 1420
  • 30 Catellani M, Mealli C, Motti E, Paoli P, Perez-Carreño E, Pregosin PS. J. Am. Chem. Soc. 2002; 124: 4336
  • 31 Jiao L, Bach T. J. Am. Chem. Soc. 2011; 133: 12990
  • 32 Lautens M, Piguel S. Angew. Chem. Int. Ed. 2000; 39: 1045
  • 33 Sun M, Chen X, Feng Z, Deng G, Yang Y, Liang Y. Org. Chem. Front. 2021; 8: 6535
  • 34 Rago AJ, Dong G. Org. Lett. 2021; 23: 3755
  • 35 Li J, Yang Y, Liu Y, Liu Q, Zhang L, Li X, Dong Y, Liu H. Org. Lett. 2021; 23: 2988
  • 36 Ding YN, Huang YC, Shi WY, Zheng N, Wang CT, Chen X, An Y, Zhang Z, Liang YM. Org. Lett. 2021; 23: 5641
  • 37 Liu X, Wang J, Dong G. J. Am. Chem. Soc. 2021; 143: 9991
  • 38 Zhang BS, Jia WY, Gou XY, Yang YH, Wang F, Wang YM, Wang XC, Quan ZJ. Org. Lett. 2022; 24: 2104
  • 39 Chen CT. Chem. Mater. 2004; 16: 4389
  • 40 Wu Z, Xu X, Wang J, Dong G. Science 2021; 374: 734
  • 41 Wang CT, Li M, Ding YN, Wei WX, Zhang Z, Gou XY, Jiao RQ, Wen YT, Liang YM. Org. Lett. 2021; 23: 786
  • 42 Han M.-L, Chen J.-J, Xu H, Huang Z.-C, Huang W, Liu Y.-W, Wang X, Liu M, Guo Z.-Q, Dai H.-X. JACS Au 2021; 1: 1877
  • 43 Fu Y, Zhang YX, Guo LL. J. Org. Chem. 2021; 86: 17437
  • 44 Catellani M, Motti E, Baratta S. Org. Lett. 2001; 3: 3611
  • 45 Bai M, Jia S, Zhang J, Cheng HG, Cong H, Liu S, Huang Z, Huang Y, Chen X, Zhou Q. Angew. Chem. Int. Ed. 2022; 61: e202205245
  • 46 Du Y, Chen S, Huang A, Chen Y, Liu YL, Song G, Tang RY, Xu H, Yao G, Li Z. Org. Lett. 2022; 24: 1341
  • 47 Wu Z, Dong G. Angew. Chem. Int. Ed. 2022; 61: e202201239
  • 48 Liu J, Lin H, Jiang H, Huang L. Org. Lett. 2022; 24: 484
  • 49 Gao Q, Wu C, Deng S, Li L, Liu ZS, Hua Y, Ye J, Liu C, Cheng HG, Cong H, Jiao Y, Zhou Q. J. Am. Chem. Soc. 2021; 143: 7253
  • 50 Zhang BS, Wang F, Gou XY, Yang YH, Jia WY, Liang YM, Wang XC, Li Y, Quan ZJ. Org. Lett. 2021; 23: 7518
  • 51 Li R, Dong G. Angew. Chem. Int. Ed. 2021; 60: 26184
  • 52 Tsukada N, Shibuya A, Nakamura I, Kitahara H, Yamamoto Y. Tetrahedron 1999; 55: 8833
  • 53 Lautens M, Meyer C, Lorenz A. J. Am. Chem. Soc. 1996; 118: 10676
  • 54 Bessmertnykh AG, Blinov KA, Grishin YK, Donskaya NA, Beletskaya IP. Tetrahedron Lett. 1995; 36: 7901
  • 55 Wurzer N, Klimczak U, Babl T, Fischer S, Angnes RA, Kreutzer D, Pattanaik A, Rehbein J, Reiser O. ACS Catal. 2021; 11: 12019
  • 56 Cohen A, Kaushansky A, Marek I. JACS Au 2022; 2: 687
  • 57 Wu M, Wang S, Wang Y, Gao H, Yi W, Zhou Z. Eur. J. Org. Chem. 2021; 2021: 5507
  • 58 Zhu YQ, Niu YX, Hui LW, He JL, Zhu K. Adv. Synth. Catal. 2019; 361: 2897
  • 59 Singh A, Dey A, Volla CM. R. J. Org. Chem. 2021; 86: 10474
  • 60 Liu R, Wei Y, Shi M. Chem. Commun. 2019; 55: 7558
  • 61 Li Q, Yuan X, Li B, Wang B. Chem. Commun. 2020; 56: 1835
  • 62 Shen Z, Maksso I, Kuniyil R, Rogge T, Ackermann L. Chem. Commun. 2021; 57: 3668
  • 63 Ramesh B, Jeganmohan M. J. Org. Chem. 2022; 87: 5668
  • 64 Wang Q, Zhi CL, Lu PP, Liu S, Zhu X, Hao XQ, Song MP. Adv. Synth. Catal. 2019; 361: 1253