Klin Monbl Augenheilkd 2023; 240(04): 516-521
DOI: 10.1055/a-2021-7724
Klinische Studie

Natural Course of Solar and Laser-Associated Retinal and Macular Injuries at a Primary Care Hospital in Switzerland

Natürlicher Verlauf bei solarer und laserassoziierter Retinopathie an einem öffentlichen Spital in der Schweiz
Maximilian Robert Justus Wiest*
Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
,
Jeanne Martine Gunzinger*
Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
,
Timothy Hamann
Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
,
Katrin Fasler
Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
,
Sadiq Said
Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
,
Anahita Bajka
Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
,
Daniel Rudolf Muth
Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
,
Daniel Barthelmes
Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
,
Frank Blaser
Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
,
Sandrine Anne Zweifel
Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
› Author Affiliations

Abstract

Background Solar and laser-associated retinopathies are rare occurrences. The two retinopathies are both photo-induced but differ in the involved intensity and duration of exposure. The purpose of this study was to evaluate the clinical features and natural course of these two entities, with a focus on the changes in the outer retina over time.

Patients and Methods This retrospective analysis assessed patients with solar or laser maculopathy seen at the Department of Ophthalmology of the University Hospital Zurich in Switzerland over the last 10 years. Visual acuity (VA; Snellen) and optical coherence tomography (OCT) findings were reviewed and analyzed at baseline and last follow-up visit. Areas of damaged outer retina, identified on en face OCT images as hyporeflective areas, were tagged and compared between visits. Descriptive analysis was performed by calculating mean values ± standard deviation (SD). Statistical evaluation was done using the Wilcoxon signed rank test. A p value < 0.05 was considered statistically significant.

Results Five patients with solar retinopathy and six patients with laser-associated retinopathy were identified. In the solar retinopathy group, mean VA at baseline was 0.80 (SD ± 0.37) and improved to 0.90 (SD ± 0.36). This was not statistically significant (p = 0.066). In the laser-associated retinopathy group, mean VA at baseline was 0.89 (SD ± 0.18) and improved to 1.03 (SD ± 0.09), which was not statistically significant either (p = 0.063). At baseline, in OCT cross-sections, initial changes were observed in the interdigitation, myoid, and ellipsoid zone, as well as the outer nuclear layer and the Henle fiber layer. At follow-up, most cases presented an alteration in the residual ellipsoid zone, with the degree of the aforementioned alterations depending on the size of the initial defect. A decrease of the hyporeflective alterations measured in en face OCT scans was observed in both groups but was only statistically significant in the laser-associated retinopathy group (p = 0.018 versus p = 0.172).

Conclusions OCT can help to detect and monitor solar and laser-associated retinal injuries. Most injuries are minor, with good functional restitution. Minor changes in the ellipsoid zone often persist, even in cases with full visual recovery.

Zusammenfassung

Hintergrund Solare und laserassoziierte Retinopathien sind seltene Vorkommnisse. Beide Retinopathien sind fotoinduziert, mit aber sehr unterschiedlicher Expositionsdauer und Intensität. Ziel dieser Studie ist den natürlichen Verlauf dieser zwei Krankheitsbilder zu evaluieren mit speziellem Fokus auf die Alterationen in der äußeren Netzhaut.

Patienten und Methoden Es handelt sich um eine retrospektive Studie, welche Patienten mit solarer oder laserassoziierter Retinopathie an der Augenklinik des Unversitätsspitals Zürich über die letzten zehn Jahre einschließt. Visus (Snellen) und optische Kohärenztomografie-(OCT-)Aufnahmen bei erster und letzter Konsultation wurden überprüft und analysiert.

Ergebnisse Fünf Patienten mit solarer Retinopathie und sechs Patienten mit laserassoziierter Retinopathie konnten eingeschlossen werden. Bei der Gruppe der solaren Retinopathie stieg der Visus von 0,8 (SD ± 0,37) auf 0,90 (SD ± 0,36) an. Dies war nicht statistisch signifikant (p = 0,066). Bei der Gruppe der laserassoziierten Retinopathie stieg der Visus von 0,89 (SD ± 0,18) auf 1,03 (SD ± 0,09) an, ebenfalls nicht statistisch signifikant (p = 0,063). In der OCT konnten Alterationen in der Interdigitationszone, der ellipsoiden Zone und der äußeren Körnerzellschicht/Henle-Faser-Schicht gesehen werden. Fast alle Fälle zeigten einen persistierenden Defekt in der ellipsoiden Zone und teilweise auch eine Atrophie des retinalen Pigmentepithels. Beide Gruppen zeigten eine Abnahme der Fläche des hyporeflektiven Areals auf Niveau der ellipsoiden Zone in der En-face-OCT, dies war jedoch nur bei der Gruppe der laserassoziierten Retinopathien signifikant (p = 0,018 versus p = 0,172).

Schlussfolgerungen OCT unterstützt die Diagnostik bei solarer und laserassoziierter Retinopathie, insbesondere bei sehr milden Verletzungen. Bei beiden Krankheitsbilder handelt es sich meist um geringgradige Befunde mit guter Prognose. Auch in Fällen mit kompletter visueller Erholung kann häufig noch eine kleine Alteration in der ellipsoiden Zone persistieren.

* These authors contributed equally as first authors.




Publication History

Received: 16 October 2022

Accepted: 25 January 2023

Article published online:
25 April 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bhavsar KV, Michel Z, Greenwald M. et al. Retinal injury from handheld lasers: a review. Surv Ophthalmol 2021; 66: 231-260
  • 2 Gunzinger JM, Fasler K, Barthelmes D. et al. En Face Optical Coherence Tomography Imaging Ellipsoid Zone Regeneration in Laser-Induced and Solar Maculopathies. Case Rep Ophthalmol Med 2019; 2019: 3849871
  • 3 Wu J, Seregard S, Algvere PV. Photochemical damage of the retina. Surv Ophthalmol 2006; 51: 461-481
  • 4 Vos JJ. A theory of retinal burns. Bull Math Biophys 1962; 24: 115-128
  • 5 Tso MO, La Piana FG. The human fovea after sungazing. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 1975; 79: OP788-OP795
  • 6 Hunter JJ, Morgan JI, Merigan WH. et al. The susceptibility of the retina to photochemical damage from visible light. Prog Retin Eye Res 2012; 31: 28-42
  • 7 Beems EM, van Best JA. Light transmission of the cornea in whole human eyes. Exp Eye Res 1990; 50: 393-395
  • 8 Ambach W, Blumthaler M, Schuepf T. et al. Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation. Doc Ophthalmol 1994; 88: 165-173
  • 9 Michaelides M, Rajendram R, Marshall J. et al. Eclipse retinopathy. Eye 2001; 15: 148-151
  • 10 SUVA. Einteilung in Laserklassen: Vorschriften und Schutzmassnahmen. Accessed July 14, 2022 at: https://www.suva.ch/de-CH/material/Factsheets/einteilung-in-laserklassen
  • 11 Alsulaiman SM, Alrushood AA, Almasaud J. et al. High-power handheld blue laser-induced maculopathy: the results of the King Khaled Eye Specialist Hospital Collaborative Retina Study Group. Ophthalmology 2014; 121: 566-572.e1
  • 12 Barkana Y, Belkin M. Laser eye injuries. Surv Ophthalmol 2000; 44: 459-478
  • 13 Ajudua S, Mello MJ. Shedding some light on laser pointer eye injuries. Pediatr Emerg Care 2007; 23: 669-672
  • 14 Harris MD, Lincoln AE, Amoroso PJ. et al. Laser eye injuries in military occupations. Aviat Space Environ Med 2003; 74: 947-952
  • 15 Linton E, Walkden A, Steeples LR. et al. Retinal burns from laser pointers: a risk in children with behavioural problems. Eye (Lond) 2019; 33: 492-504
  • 16 Sanchez-Barahona C, Gonzalez-Martin-Moro J, Zarallo-Gallardo J. et al. Early changes in optic coherence tomography in a child with laser pointer maculopathy. Arch Soc Esp Oftalmol 2017; 92: 33-36
  • 17 Raoof N, OʼHagan J, Pawlowska N. et al. “Toy” laser macular burns in children: 12-month update. Eye (Lond) 2016; 30: 492-496
  • 18 Raoof N, Bradley P, Theodorou M. et al. The New Pretender: A Large UK Case Series of Retinal Injuries in Children Secondary to Handheld Lasers. Am J Ophthalmol 2016; 171: 88-94
  • 19 Mainster MA. Solar eclipse safety. Ophthalmology 1998; 105: 9-10
  • 20 Ham jr. WT, Mueller HA, Williams RC. et al. Ocular hazard from viewing the sun unprotected and through various windows and filters. Appl Opt 1973; 12: 2122-2129
  • 21 Galainena ML. Solar retinopathy. Ann Ophthalmol 1976; 8: 304-306
  • 22 Ewald RA. Sun gazing associated with the use of LSD. Ann Ophthalmol 1971; 3: 15-17
  • 23 Hope-Ross MW, Mahon GJ, Gardiner TA. et al. Ultrastructural findings in solar retinopathy. Eye (Lond) 1993; 7: 29-33
  • 24 Jain A, Desai RU, Charalel RA. et al. Solar retinopathy: comparison of optical coherence tomography (OCT) and fluorescein angiography (FA). Retina 2009; 29: 1340-1345
  • 25 Bhavsar KV, Wilson D, Margolis R. et al. Multimodal imaging in handheld laser-induced maculopathy. Am J Ophthalmol 2015; 159: 227-231.e2
  • 26 Hossein M, Bonyadi J, Soheilian R. et al. SD-OCT features of laser pointer maculopathy before and after systemic corticosteroid therapy. Ophthalmic Surg Lasers Imaging 2011; 42: e135-e138
  • 27 Eter N, Engel DR, Meyer L. et al. In vivo visualization of dendritic cells, macrophages, and microglial cells responding to laser-induced damage in the fundus of the eye. Invest Opthalmol Vis Sci 2008; 49: 3649
  • 28 Zwick H, Edsall P, Stuck BE. et al. Laser induced photoreceptor damage and recovery in the high numerical aperture eye of the garter snake. Vision Res 2008; 48: 486-493
  • 29 Cortina MS, Gordon WC, Lukiw WJ. et al. DNA repair in photoreceptor survival. Mol Neurobiol 2003; 28: 111-122
  • 30 Sher A, Jones BW, Huie P. et al. Restoration of retinal structure and function after selective photocoagulation. J Neurosci 2013; 33: 6800-6808