Subscribe to RSS
DOI: 10.1055/a-2021-9514
Enantioselective Synthesis of Axially Chiral 1-Arylisoquinolines by Iridium(I)-Catalyzed Hydroarylation of Alkynes
We thank National Key R&D Program of China (2021YFA1500100), NSFC (21821002, 92256302, and 22071260), Science and Technology Commission of Shanghai Municipality (21520780100) for generous financial support.
Abstract
Ir(I)-catalyzed atroposelective hydroarylation of alkynes with 1-arylisoquinolines through C–H functionalization was realized. In the presence of 5 mol% of [Ir(cod)Cl]2 and 10 mol% of QUINOX-P, a wide range of axially chiral alkenylated biaryls were obtained in up to 98% yield and 97% ee. Notably, only one equivalent of the alkyne was required to guarantee a high efficiency of this C–H functionalization process. This reaction exhibits excellent functional-group tolerance under mild conditions.
Key words
alkynes - isoquinolines - axial chirality - C–H functionalization - iridium catalysis - asymmetric synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2021-9514.
- Supporting Information
Publication History
Received: 10 January 2023
Accepted after revision: 29 January 2023
Accepted Manuscript online:
29 January 2023
Article published online:
22 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Zheng C, You S.-L. RSC Adv. 2014; 4: 6173
- 1b Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
- 1c Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
- 1d Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
- 1e Woźniak Ł, Cramer N. Trends Chem. 2019; 1: 471
- 1f Liao G, Zhang T, Lin ZK, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
- 1g Achar T, Maiti S, Jana S, Maiti D. ACS Catal. 2020; 10: 13748
- 2a Liao G, Zhou T, Yao QJ, Shi B.-F. Chem. Commun. 2019; 55: 8514
- 2b Wang Q, Gu Q, You S.-L. Acta Chim. Sin. 2019; 77: 690
- 2c Liu C.-X, Zhang W.-W, Yin S.-Y, Gu Q, You S.-L. J. Am. Chem. Soc. 2021; 143: 14025
- 3a Ma Y.-N, Zhang H.-Y, Yang S.-D. Org. Lett. 2015; 17: 2034
- 3b Yao Q.-J, Zhang S, Zhan B.-B, Shi B.-F. Angew. Chem. Int. Ed. 2017; 56: 6617
- 3c Liao G, Yao Q.-J, Zhang Z.-Z, Wu Y.-J, Huang D.-Y, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 3661
- 3d Liao G, Chen H.-M, Xia Y.-N, Li B, Yao Q.-J, Shi B.-F. Angew. Chem. Int. Ed. 2019; 58: 11464
- 3e Li H, Yan X, Zhang J, Guo W, Jiang J, Wang J. Angew. Chem. Int. Ed. 2019; 58: 6732
- 3f Jiang H.-J, Geng R.-L, Wei J.-H, Gong L.-Z. Chin. J. Chem. 2021; 39: 3269
- 3g Chen H.-M, Liao G, Xu C.-K, Yao Q.-J, Zhang S, Shi B.-F. CCS Chem. 2021; 3: 455
- 4a Knöpfel TF, Aschwanden P, Ichikawa T, Watanabe T, Carreira EM. Angew. Chem. Int. Ed. 2004; 43: 5971
- 4b Clayden J, Fletcher SP, McDouall JJ. W, Rowbottom SJ. M. J. Am. Chem. Soc. 2009; 131: 5331
- 4c Fernández E, Guiry PJ, Connole KP. T, Brown JM. J. Org. Chem. 2014; 79: 5391
- 4d Ramírez-López P, Ros A, Estepa B, Fernández R, Fiser B, Gómez-Bengoa E, Lassaletta JM. ACS Catal. 2016; 6: 3955
- 4e Rokade BV, Guiry PJ. ACS Catal. 2018; 8: 624
- 4f Han S.-J, Bhat V, Stoltz BM, Virgil SC. Adv. Synth. Catal. 2019; 361: 441
- 4g Liu Q, Xu H, Li Y, Yao Y, Zhang X, Guo Y, Ma S. Nat. Commun. 2021; 12: 19
- 4h Jiang P.-Y, Fan K.-F, Li S, Xiang S.-H, Tan B. Nat. Commun. 2021; 12: 2384
- 4i Gao Z, Wang F, Qian J, Yang H, Xia C, Zhang J, Jiang G. Org. Lett. 2021; 23: 1181
- 5 Kakiuchi F, Le Gendre P, Yamada A, Ohtaki H, Murai S. Tetrahedron: Asymmetry 2000; 11: 2647
- 6a Zheng J, You S.-L. Angew. Chem. Int. Ed. 2014; 53: 13244
- 6b Zheng J, Cui W.-J, Zheng C, You S.-L. J. Am. Chem. Soc. 2016; 138: 5242
- 7a Wang Q, Cai Z.-J, Liu C.-X, Gu Q, You S.-L. J. Am. Chem. Soc. 2019; 141: 9504
- 7b Wang Q, Zhang W.-W, Song H, Wang J, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 15678
- 7c Zhang W.-W, Liu C.-X, Yang P, Zhang S.-Z, Gu Q, You S.-L. Org. Lett. 2022; 24: 564
- 8a Schipper DJ, Hutchinson M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6910
- 8b Gao K, Lee P.-S, Fujita T, Yoshikai N. J. Am. Chem. Soc. 2010; 132: 12249
- 8c Matsuda T, Moriya T, Goya T, Murakami M. Chem. Lett. 2011; 40: 40
- 8d Ding Z, Yoshikai N. Angew. Chem. Int. Ed. 2012; 51: 4698
- 8e Hashimoto Y, Hirano K, Satoh T, Kakiuchi F, Miura M. Org. Lett. 2012; 14: 2058
- 8f Ryu J, Cho SH, Chang S. Angew. Chem. Int. Ed. 2012; 51: 3677
- 8g Takebayashi S, Shibata T. Organometallics 2012; 31: 4114
- 8h Liu B, Zhou T, Li B, Xu S, Song H, Wang B. Angew. Chem. Int. Ed. 2014; 53: 4191
- 8i Zhang J, Shrestha R, Hartwig JF, Zhao P. Nat. Chem. 2016; 8: 1144
- 8j Shibata K, Natsui S, Chatani N. Org. Lett. 2017; 19: 2234
- 8k Nagamoto M, Fukuda J.-i, Hatano M, Yorimitsu H, Nishimura T. Org. Lett. 2017; 19: 5952
- 8l Fernández DF, Rodrigues CA. B, Calvelo M, Gulías M, Mascareñas JL, López F. ACS Catal. 2018; 8: 7397
- 8m Wang D, Dong B, Wang Y, Qian J, Zhu J, Zhao Y, Shi Z. Nat. Commun. 2019; 10: 3539
- 8n Xu H.-J, Kang Y.-S, Shi H, Zhang P, Chen Y.-K, Zhang B, Liu Z.-Q, Zhao J, Sun W.-Y, Yu J.-Q, Lu Y. J. Am. Chem. Soc. 2019; 141: 76
- 8o Suslick BA, Tilley TD. J. Am. Chem. Soc. 2020; 142: 11203
- 8p Zhang Z, Cordier M, Dixneuf PH, Soulé J.-F. Org. Lett. 2020; 22: 5936
- 8q Qi S.-L, Liu Y.-P, Li Y, Luan Y.-X, Ye M. Nat. Commun. 2022; 13: 2938
- 9a Shibuya T, Shibata Y, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2011; 50: 3963
- 9b Nakamura K, Furumi S, Takeuchi M, Shibuya T, Tanaka K. J. Am. Chem. Soc. 2014; 136: 5555
- 9c Shibata T, Uno N, Sasaki T, Kanyiva KS. J. Org. Chem. 2016; 81: 6266
- 9d González-Fernández E, Nicholls LD. M, Schaaf LD, Farès C, Lehmann CW, Alcarazo M. J. Am. Chem. Soc. 2017; 139: 1428
- 9e Nicholls LD. M, Marx M, Hartung T, González-Fernández E, Golz C, Alcarazo M. ACS Catal. 2018; 8: 6079
- 9f Zhang J, Simon M, Golz C, Alcarazo M. Angew. Chem. Int. Ed. 2020; 59: 5647
- 9g Hartung T, Machleid R, Simon M, Golz C, Alcarazo M. Angew. Chem. Int. Ed. 2020; 59: 5660
- 9h Redero P, Hartung T, Zhang J, Nicholls LD. M, Zichen G, Simon M, Golz C, Alcarazo M. Angew. Chem. Int. Ed. 2020; 59: 23527
- 9i Zhang P.-C, Li Y.-L, He J, Wu H.-H, Li Z, Zhang J. Nat. Commun. 2021; 12: 4609
- 9j Pelliccioli V, Hartung T, Simon M, Golz C, Licandro E, Cauteruccio S, Alcarazo M. Angew. Chem. Int. Ed. 2022; 61: e202114577
- 10 Lou S.-J, Zhuo Q, Nishiura M, Luo G, Hou Z. J. Am. Chem. Soc. 2021; 143: 2470
- 11 Cheng R, Zhang J, Zhang H, Qiu Z, Xie Z. Nat. Commun. 2021; 12: 7146
- 12 During the preparation of our manuscript, another group reported a similar work on Ir-catalyzed asymmetric hydroarylation of alkynes, see: Vázquez-Domínguez P, Romero-Arenas A, Fernández R, Lassaletta JM, Ros A. ACS Catal. 2023; 13: 42
- 13a Pan C, Yin S.-Y, Wang S.-B, Gu Q, You S.-L. Angew. Chem. Int. Ed. 2021; 60: 15510
- 13b Yin S.-Y, Pan C, Zhang W.-W, Liu C.-X, Zhao F, Gu Q, You S.-L. Org. Lett. 2022; 24: 3620
- 13c Zhang W.-W, Wang Q, Zhang S.-Z, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2023; 62: e202214460
- 14 (S a,E)-1-[2-(1,2-Bis(4-methoxyphenyl)vinyl]-1-naphthyl)benzo[h]isoquinoline (3aa) Yellow foam; yield: 105.7 mg (97%, 96% ee); [α]D 24 –394.9 (c = 0.2, CHCl3). HPLC [Chiralpak AD-H column (4.6 × 250 mm), hexane/i-PrOH (90:10); flow rate: 1.0 mL/min, λ = 254 nm, 25 ℃]. t R (minor) = 8.23 min; t R (major) = 23.86 min. IR (ATR): = 2925, 2854, 1605, 1509, 1462, 1291, 1247, 1176, 1033, 853, 826, 752, 669 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.57 (d, J = 5.2 Hz, 1 H), 8.01 (d, J = 8.4 Hz, 1 H), 7.95 (d, J = 8.0 Hz, 1 H), 7.83–7.75 (m, 2 H), 7.62 (d, J = 8.4 Hz, 1 H), 7.57 (d, J = 8.8 Hz, 1 H), 7.52–7.46 (m, 2 H), 7.46–7.41 (m, 2 H), 7.38 (d, J = 8.4 Hz, 1 H), 7.28–7.19 (m, 1 H), 7.08–7.00 (m, 1 H), 6.48–6.48 (m, 4 H), 6.27 (d, J = 8.4 Hz, 2 H), 6.16 (s, 1 H), 6.09 (d, J = 8.4 Hz, 2 H), 3.62 (s, 3 H), 3.52 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 158.0, 157.7, 157.1, 143.6, 140.7, 140.2, 139.1, 137.8, 133.5, 133.1, 132.2, 132.1, 131.9, 130.9, 130.6, 130.22, 130.17, 129.6, 129.3, 128.7, 128.4, 128.1, 126.92, 126.90, 126.86, 126.6, 126.4, 126.3, 126.0, 125.5, 120.9, 113.1, 112.8, 55.1, 55.0. HRMS (ESI-TOF): m/z [M + H]+ calcd for C39H30NO2: 544.2271; found: 544.2265.
- 15 Xie J.-H, Wang L.-X, Fu Y, Zhu S.-F, Fan B.-M, Duan H.-F, Zhou Q.-L. J. Am. Chem. Soc. 2003; 125: 4404
- 16 Imamoto T, Sugita K, Yoshida K. J. Am. Chem. Soc. 2005; 127: 11934
- 17 1-(2-[1,2-Diarylvinyl]-1-naphthyl)benzo[h]isoquinolines 3: General Procedure Under an argon atmosphere, a flame-dried 10 mL Schlenk tube was charged with [Ir(cod)Cl]2 (6.7 mg, 0.01 mmol, 5 mol%), (S,S)-QUINOX-P (6.6 mg, 0.02 mmol, 10 mol%) and anhyd THF (1.0 mL), and the resulting solution was stirred for 10 min at rt. Then, isoquinoline 1 (0.2 mmol), alkyne 2 (0.2 mmol), and NaBArF (35.4 mg, 0.04 mmol, 20 mol%) were added under argon and the tube was heated at 80 °C for 10–24 h. The mixture was then cooled to rt and the crude product was purified by preparative TLC (PE–EtOAc, 5:1).
For selected reviews on asymmetric C–H functionalization, see:
For selected recent reviews on the enantioselective synthesis of axially chiral compounds by C–H functionalization, see:
For selected recent examples on the enantioselective synthesis of axially chiral compounds by C–H functionalization, see:
For selected examples, see:
Selected examples of hydroarylation of alkynes, see:
For selected examples of enantioselective hydroarylation of alkynes, see: