RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2023; 55(15): 2343-2352
DOI: 10.1055/a-2022-1511
DOI: 10.1055/a-2022-1511
paper
Special Issue dedicated to Prof. David A. Evans
Synthesis of Polycyclic Imidazoles via α-C–H/N–H Annulation of Alicyclic Amines
Financial support from the National Institutes of Health–National Institute of General Medical Sciences (NIH–NIGMS, grant no. R01GM101389) is gratefully acknowledged. Mass spectrometry instrumentation was supported by a grant from the NIH (S10 OD021758-01A1).
Abstract
Secondary alicyclic amines are converted into their corresponding ring-fused imidazoles in a simple procedure consisting of oxidative imine formation followed by a van Leusen reaction. Amines with an existing α-substituent undergo regioselective ring-fusion at the α′-position. This method was utilized in a synthesis of fadrozole.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2022-1511.
- Supporting Information
Publikationsverlauf
Eingereicht: 18. November 2022
Angenommen nach Revision: 30. Januar 2023
Accepted Manuscript online:
30. Januar 2023
Artikel online veröffentlicht:
13. April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
- 1b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 2a Dutta S, Li B, Rickertsen DR. L, Valles DA, Seidel D. SynOpen 2021; 5: 173
- 2b Campos KR. Chem. Soc. Rev. 2007; 36: 1069
- 2c Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
- 2d Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BU. W. Chem. Eur. J. 2012; 18: 10092
- 2e Peng B, Maulide N. Chem. Eur. J. 2013; 19: 13274
- 2f Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 2g Haibach MC, Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5010
- 2h Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
- 2i Cheng M.-X, Yang S.-D. Synlett 2017; 28: 159
- 2j Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
- 2k Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569
- 2l Edwards PM, Schafer LL. Chem. Commun. 2018; 54: 12543
- 2m Gonnard L, Guérinot A, Cossy J. Tetrahedron 2019; 75: 145
- 2n Liu S, Zhao Z, Wang Y. Chem. Eur. J. 2019; 25: 2423
- 2o Antermite D, Bull JA. Synthesis 2019; 51: 3171
- 2p Zhang T, Wu Y.-H, Wang N.-X, Xing Y. Synthesis 2019; 51: 4531
- 2q Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
- 2r Kapoor M, Singh A, Sharma K, Hua Hsu M. Adv. Synth. Catal. 2020; 362: 4513
- 2s An X.-D, Xiao J. Org. Chem. Front. 2021; 8: 1364
- 2t Basak S, Winfrey L, Kustiana BA, Melen RL, Morrill LC, Pulis AP. Chem. Soc. Rev. 2021; 50: 3720
- 2u Caplin MJ, Foley DJ. Chem. Sci. 2021; 12: 4646
- 2v Ohno S, Miyoshi M, Murai K, Arisawa M. Synthesis 2021; 53: 2947
- 2w He Y, Zheng Z, Yang J, Zhang X, Fan X. Org. Chem. Front. 2021; 8: 4582
- 2x Chen W, Seidel D. Synthesis 2021; 53: 3869
- 2y Deb ML, Saikia BS, Borpatra PJ, Baruah PK. Asian J. Org. Chem. 2022; 11: e202100706
- 2z Chen W, Yang X, Cao X. SynOpen 2022; 6: 286
- 3a Ohmatsu K, Suzuki R, Furukawa Y, Sato M, Ooi T. ACS Catal. 2020; 10: 2627
- 3b Verma P, Richter JM, Chekshin N, Qiao JX, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 5117
- 3c Walker MM, Koronkiewicz B, Chen S, Houk KN, Mayer JM, Ellman JA. J. Am. Chem. Soc. 2020; 142: 8194
- 3d Chen L, Yang Y, Liu L, Gao Q, Xu S. J. Am. Chem. Soc. 2020; 142: 12062
- 3e Xu L.-P, Roque JB, Sarpong R, Musaev DG. J. Am. Chem. Soc. 2020; 142: 21140
- 3f Feng K, Quevedo RE, Kohrt JT, Oderinde MS, Reilly U, White MC. Nature 2020; 580: 621
- 3g Sarver PJ, Bacauanu V, Schultz DM, DiRocco DA, Lam Y.-h, Sherer EC, MacMillan DW. C. Nat. Chem. 2020; 12: 459
- 3h Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Science 2020; 368: 736
- 3i Short MA, Blackburn JM, Roizen JL. Synlett 2020; 31: 102
- 3j Trindade AF, Faulkner EL, Leach AG, Nelson A, Marsden SP. Chem. Commun. 2020; 56: 8802
- 3k Holmberg-Douglas N, Choi Y, Aquila B, Huynh H, Nicewicz DA. ACS Catal. 2021; 11: 3153
- 3l Yi M.-J, Zhang H.-X, Xiao T.-F, Zhang J.-H, Feng Z.-T, Wei L.-P, Xu G.-Q, Xu P.-F. ACS Catal. 2021; 11: 3466
- 3m Aguilera EY, Sanford MS. Angew. Chem. Int. Ed. 2021; 60: 11227
- 3n Chang Y, Cao M, Chan JZ, Zhao C, Wang Y, Yang R, Wasa M. J. Am. Chem. Soc. 2021; 143: 2441
- 3o Yue W.-J, Day CS, Martin R. J. Am. Chem. Soc. 2021; 143: 6395
- 3p Koperniku A, Schafer LL. Chem. Eur. J. 2021; 27: 6334
- 3q Novaes LF. T, Ho JS. K, Mao K, Liu K, Tanwar M, Neurock M, Villemure E, Terrett JA, Lin S. J. Am. Chem. Soc. 2022; 144: 1187
- 3r Rodrigalvarez J, Reeve LA, Miró J, Gaunt MJ. J. Am. Chem. Soc. 2022; 144: 3939
- 3s Shu X, Zhong D, Lin Y, Qin X, Huo H. J. Am. Chem. Soc. 2022; 144: 8797
- 3t Feng T, Wang S, Liu Y, Liu S, Qiu Y. Angew. Chem. Int. Ed. 2022; 61: e202115178
- 3u Gong Y, Su L, Zhu Z, Ye Y, Gong H. Angew. Chem. Int. Ed. 2022; 61: e202201662
- 3v Lee W, Kim D, Seo S, Chang S. Angew. Chem. Int. Ed. 2022; 61: e202202971
- 3w Guo R, Xiao H, Li S, Luo Y, Bai J, Zhang M, Guo Y, Qi X, Zhang G. Angew. Chem. Int. Ed. 2022; 61: e202208232
- 4a Chen W, Ma L, Paul A, Seidel D. Nat. Chem. 2018; 10: 165
- 4b Paul A, Seidel D. J. Am. Chem. Soc. 2019; 141: 8778
- 4c Chen W, Paul A, Abboud KA, Seidel D. Nat. Chem. 2020; 12: 545
- 4d Paul A, Kim JH, Daniel SD, Seidel D. Angew. Chem. Int. Ed. 2021; 60: 1625
- 4e Kim JH, Paul A, Ghiviriga I, Seidel D. Org. Lett. 2021; 23: 797
- 4f Chen W, Seidel D. Org. Lett. 2021; 23: 3729
- 4g Valles DA, Dutta S, Paul A, Abboud KA, Ghiviriga I, Seidel D. Org. Lett. 2021; 23: 6367
- 4h Paul A, Vasseur C, Daniel SD, Seidel D. Org. Lett. 2022; 24: 1224
- 4i Yu F, Valles DA, Chen W, Daniel SD, Ghiviriga I, Seidel D. Org. Lett. 2022; 24: 6364
- 5a Majewski M, Gleave DM. J. Organomet. Chem. 1994; 470: 1
- 5b Wittig G, Schmidt HJ, Renner H. Chem. Ber. 1962; 95: 2377
- 5c Wittig G, Hesse A. Justus Liebigs Ann. Chem. 1971; 746: 149
- 5d Wittig G, Hesse A. Justus Liebigs Ann. Chem. 1971; 746: 174
- 5e Wittig G, Häusler G. Justus Liebigs Ann. Chem. 1971; 746: 185
- 6 For an excellent recent review on organic oxidants serving as hydride acceptors, see: Miller JL, Lawrence J.-MI. A, Rodriguez del Rey FO, Floreancig PE. Chem. Soc. Rev. 2022; 51: 5660
- 7 van Leusen AM, Wildeman J, Oldenziel OH. J. Org. Chem. 1977; 42: 1153
- 8a Slobbe P, Ruijter E, Orru RV. A. MedChemComm 2012; 3: 1189
- 8b Akritopoulou-Zanze I. In Isocyanide Chemistry . Nenajdenko VG. Wiley-VCH; Weinheim: 2012: 451
- 8c Hulme C, Ayaz M, Martinez-Ariza G, Medda F, Shaw A. In Small Molecule Medicinal Chemistry . Czechtizky W, Hamley P. Wiley; Weinheim: 2015: 145
- 8d Zheng X, Ma Z, Zhang D. Pharmaceuticals 2020; 13: 37
- 9a Sasaki T, Eguchi S, Toi N. J. Org. Chem. 1979; 44: 3711
- 9b Sisko J, Kassick AJ, Mellinger M, Filan JJ, Allen A, Olsen MA. J. Org. Chem. 2000; 65: 1516
- 9c Murugesh V, Harish B, Adiseshu M, Babu Nanubolu J, Suresh S. Adv. Synth. Catal. 2016; 358: 1309
- 9d Satyam K, Murugesh V, Suresh S. Org. Biomol. Chem. 2019; 17: 5234
- 9e Rudy H.-KA, Mayer P, Wanner KT. Eur. J. Org. Chem. 2020; 3599
- 10 For a photochemical approach to the synthesis of ring-fused imidazoles from tertiary amines, see: Li J, Zhang P, Jiang M, Yang H, Zhao Y, Fu H. Org. Lett. 2017; 19: 1994
- 11a Grigg R, Nimal Gunaratne HQ, Henderson D, Sridharan V. Tetrahedron 1990; 46: 1599
- 11b Deb I, Seidel D. Tetrahedron Lett. 2010; 51: 2945
- 11c Yang Z, Lu N, Wei Z, Cao J, Liang D, Duan H, Lin Y. J. Org. Chem. 2016; 81: 11950
- 11d Zheng K.-L, Shu W.-M, Ma J.-R, Wu Y.-D, Wu A.-X. Org. Lett. 2016; 18: 3526
- 11e Zheng K.-L, You M.-Q, Shu W.-M, Wu Y.-D, Wu A.-X. Org. Lett. 2017; 19: 2262
- 12 Allentoff AJ, Markus B, Duelfer T, Wu A, Jones L, Ciszewska G, Ray T. J. Labelled Compd. Radiopharm. 2000; 43: 1075
- 13 Schlepphorst C, Wiesenfeldt MP, Glorius F. Chem. Eur. J. 2018; 24: 356
- 14 The propensity of alicyclic imines such as 1-pyrroline and 1-piperideine to undergo the formation of more stable and typically unreactive trimers is well documented. For a leading study, see: Fandrick DR, Hart CA, Okafor IS, Mercadante MA, Sanyal S, Masters JT, Sarvestani M, Fandrick KR, Stockdill JL, Grinberg N, Gonnella N, Lee H, Senanayake CH. Org. Lett. 2016; 18: 6192
- 15 Claxton GP, Allen L, Grisar JM. Org. Synth. 1977; 56: 118
- 16 Yujiro N, Keiichiro O, Yoshito T, Shuji T. Chem. Lett. 1977; 693
- 17 Browne LJ, Gude C, Rodriguez H, Steele RE, Bhatnager A. J. Med. Chem. 1991; 34: 725
- 18a Maligres PE, Waters MS, Fleitz F, Askin D. Tetrahedron Lett. 1999; 40: 8193
- 18b Li X, Li J, Huang Y, Gong Q, Fu Y, Xu Y, Huang J, You H, Zhang D, Zhang D, Mao F, Zhu J, Wang H, Zhang H, Li J. Eur. J. Med. Chem. 2022; 229: 114045
- 19 Suffert J. J. Org. Chem. 1989; 54: 509
- 20a Sisko J, Mellinger M, Sheldrake PW, Baine NH. Org. Synth. 2000; 77: 198
- 20b Wang L, Studer A. Org. Lett. 2017; 19: 5701
- 21 Liu Z.-Y, Wen Z.-H, Wang X.-C. Angew. Chem. Int. Ed. 2017; 56: 5817
Selected reviews on the relevance of azacycles in medicine:
For a general overview of amine C–H bond functionalization, see:
Other selected reviews:
Recent examples of mechanistically diverse methods for amine C–H bond functionalization:
For an early review, see:
Selected key contributions:
Selected reviews on the van Leusen imidazole synthesis and its use in medicinal chemistry:
Examples of van Leusen imidazole syntheses with cyclic imines:
Examples of mechanistically unrelated amine N–H/C–H annulations leading to the installation of a fused pyrrole ring: