RSS-Feed abonnieren
DOI: 10.1055/a-2033-8557
New High-Performance Fluorescent Dye Scaffolds: Applications for Bioimaging and Biosensing
This work was supported by the National Natural Science Foundation of China (NSFC, 22174023), and the Research Program of Science and Technology Commission of Shanghai Municipality (20S31903700, 22QA1406700).
Abstract
Fluorescence imaging in the shortwave infrared region (SWIR, 850–2500 nm) window has become an indispensable tool in biomedical research because it has weaker absorption, less light scattering, and less background fluorescence in this window. As we know, the design and synthesis of fluorescent dyes and fluorescent probes are the cores of fluorescence imaging and biosensing. Thus, their photophysical mechanisms exploring and bioanalytical applications are multidisciplinary and cutting-edge research topics. In this regard, we have been working on high-performance fluorescent dyes and fluorescent probes for years. In short, we have developed a series of bright, stable, aggregation-resistant, SWIR fluorescent dyes ECXs, based on a carbon-bridged spiro ring strategy. We also developed a series of high-performance SWIR fluorescent dyes CXs and Chrodols, which combine the structural advantages of cyanine and xanthenoid dyes. Based on these new SWIR scaffolds, we further constructed some activatable SWIR fluorescent probes with OFF-ON or ratiometric properties for biosensing in vivo. Therefore, the main line of our work is to gain an in-depth understanding of the photophysical mechanisms of fluorescent dyes, to create high-performance luminescent dyes, and to further develop fluorescent probes for bioimaging and biosensing.
1 Introduction
2 ECX Dyes Based on a Carbon-Bridged Spiro Ring Strategy
3 Fluorescent Dyes and Fluorescent probes Combining the Structures of Cyanine and Xanthenoid Dyes
3.1 CX Series Dyes
3.2 A Functionalized Modified CX probe NRh
3.3 CX-like Dyes with a Secondary Amino Py-2
3.4 Chrodol Series Dyes
4 Conclusion and Future Prospects
Key words
fluorescence imaging - short-wave infrared - new scaffolds - fluorescent dyes - fluorescent probesPublikationsverlauf
Eingereicht: 16. Januar 2023
Angenommen nach Revision: 13. Februar 2023
Accepted Manuscript online:
13. Februar 2023
Artikel online veröffentlicht:
05. April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Gao M, Yu F, Lv C, Choo J, Chen L. Chem. Soc. Rev. 2017; 46: 2237
- 2 Li Y, Gao J, Wang S, Du M, Hou X, Tian T, Qiao X, Tian Z, Stang PJ, Li S, Hong X, Xiao Y. J. Med. Chem. 2022; 65: 2078
- 3 Licha K, Resch-Genger U. Drug Discovery Today: Technologies 2011; 8: e87
- 4 Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H. Nat. Nanotechnol. 2009; 4: 773
- 5 Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H. Nat. Med. 2012; 18: 1841
- 6 Wan H, Du H, Wang F, Dai H. Adv. Funct. Mater. 2019; 29: 1900566
- 7 Li C, Xu Y, Tu L, Choi M, Fan Y, Chen X, Sessler JL, Kim JS, Sun Y. Chem. Sci. 2022; 13: 6541
- 8 Xu Y, Li C, An J, Ma X, Yang J, Luo L, Deng Y, Kim JS, Sun Y. Sci. China Chem. 2023; 66: 155
- 9 Lei Z, Yang Y. J. Am. Chem. Soc. 2014; 136: 6594
- 10 Lei Z, Zhang F. Angew. Chem. Int. Ed. 2021; 60: 16294
- 11 Ni Y, Wu J. Org. Biomol. Chem. 2014; 12: 3774
- 12 Davis NK. S, Thompson AL, Anderson HL. J. Am. Chem. Soc. 2011; 133: 30
- 13 Lei Z, Li X, Luo X, He H, Zheng J, Qian X, Yang Y. Angew. Chem. Int. Ed. 2017; 56: 2979
- 14 Hong G, Antaris A, Dai H. Nat. Biomed. Eng. 2017; 1: 0010
- 15 Padilha LA, Webster S, Hu H, Przhonska OV, Hagan DJ, Van Stryland EW, Bondar MV, Davydenko IG, Slominsky YL, Kachkovski AD. Chem. Phys. 2008; 352: 97
- 16 Wang Q, Popov S, Feilen A, Strehmel V, Strehmel B. Angew. Chem. Int. Ed. 2021; 60: 26855
- 17 Zhao X, Zhang F, Lei Z. Chem. Sci. 2022; 13: 11280
- 18 Zhou W, Fang XN, Qiao QL, Jiang WC, Zhang Y, Xu ZC. Chin. Chem. Lett. 2021; 32: 943
- 19 Luo X, Li J, Zhao J, Gu L, Qian X, Yang Y. Chin. Chem. Lett. 2019; 30: 839
- 20 Li J, Zhang M, Yang L, Han Y, Luo X, Qian X, Yang Y. Chin. Chem. Lett. 2021; 32: 3865
- 21 Lei Z, Sun C, Pei P, Wang S, Li D, Zhang X, Zhang F. Angew. Chem. Int. Ed. 2019; 58: 8166
- 22 Zhang X, Chen Y, He H, Wang S, Lei Z, Zhang F. Angew. Chem. Int. Ed. 2021; 60: 26337
- 23 Zhao M, Wang J, Lei Z, Lu L, Wang S, Zhang H, Li B, Zhang F. Angew. Chem. Int. Ed. 2021; 60: 5091
- 24 Lan Q, Yu P, Yan K, Li X, Zhang F, Lei Z. J. Am. Chem. Soc. 2022; 144: 21010
- 25 Lavis LD, Raines RT. ACS Chem. Biol. 2014; 9: 855
- 26 Gorka AP, Nani RR, Schnermann MJ. Org. Biomol. Chem. 2015; 13: 7584
- 27 Vander Heiden MG, Cantley LC, Thompson CB. Science 2009; 324: 1029
- 28 Li F, Liang Z, Liu J, Sun J, Hu X, Zhao M, Liu J, Bai R, Kim D, Sun X, Hyeon T, Ling D. Nano Lett. 2019; 19: 4213
- 29 Ma T, Hou Y, Zeng J, Liu C, Zhang P, Jing L, Shangguan D, Gao M. J. Am. Chem. Soc. 2018; 140: 211
- 30 Jo J, Lee CH, Kopelman R, Wang X. Nat. Commun. 2017; 8: 471
- 31 Ren TB, Wang ZY, Xiang Z, Lu P, Lai HH, Yuan L, Zhang XB, Tan W. Angew. Chem. Int. Ed. 2021; 60: 800
- 32 Gong L, Shan X, Zhao XH, Tang L, Zhang XB. ChemMedChem 2021; 16: 2426
- 33 Li C, Chen G, Zhang Y, Wu F, Wang Q. J. Am. Chem. Soc. 2020; 142: 14789
- 34 Welch AA, Mulligan A, Bingham SA, Khaw KT. Br. J. Nutr. 2008; 99: 1335
- 35 Nugent SG, Kumar D, Rampton DS, Evans DF. Gut 2001; 48: 571
- 36 Grases F, Costa-Bauza A, Gomila I, Ramis M, Garcia-Raja A, Prieto RM. Urol. Res. 2012; 40: 41
- 37 Chen X, Wang F, Hyun JY, Wei T, Qiang J, Ren X, Shin I, Yoon J. Chem. Soc. Rev. 2016; 45: 2976
- 38 He S, Song J, Qu J, Cheng Z. Chem. Soc. Rev. 2018; 47: 4258
- 39 Zhu S, Tian R, Antaris AL, Chen X, Dai H. Adv. Mater. 2019; 31: e1900321
- 40 Xu Y, Li C, Ma X, Tuo W, Tu L, Li X, Sun Y, Stang PJ, Sun Y. Proc. Natl. Acad. Sci. USA 2022; 119: e2209904119
- 41 Yang H, Tu L, Li J, Bai S, Hu Z, Yin P, Lin H, Yu Q, Zhu H, Sun Y. Coord. Chem. Rev. 2022; 453: 214333