Subscribe to RSS
DOI: 10.1055/a-2039-6440
Lessons from the Total Synthesis of Highly Substituted Benzophenone Natural Products
We gratefully acknowledge initial funding of the work on mumbaistatin by Sanofi-Aventis. We thank the Universität zu Köln (University of Cologne) and the Fond der Chemischen Industrie for continuous support. The project was furthermore supported by postdoctoral fellowships to David Sucunca (from Comunidad Autónoma de La Rioja) and Dario Gerbino (from the Alexander von Humboldt-Stiftung), as well as doctoral stipends to Nikolay Slavov (from Evangelisches Studienwerk e.V. Villigst) and Lukas Münzer (Studienstiftung des Deutschen Volkes).
Dedicated to Prof. Franz-Peter Montforts on the occasion of his 75th birthday.
Abstract
In this account, we summarize the results and experience gained during 20 years of research in the field of polyketidic natural products displaying a tetra-ortho-substituted benzophenone substructure. As demonstrated by the various approaches towards mumbaistatin and pestalone as targets of high biological relevance, the synthesis of such systems is surprisingly difficult due to the intense interactions of the functional groups adjacent to the ketone bridge. We report successes and failures, as well as the discovery of surprising reactivities that are important for understanding the non-enzymatic formation of related compounds in Nature.
1 Introduction
2 Mumbaistatin
3 Pestalone
4 Conclusion
Key words
benzophenones - mumbaistatin - pestalone - phthalides - isoindolinones - carbonyl–olefin metathesis - coupling reactionsPublication History
Received: 14 February 2023
Accepted: 21 February 2023
Accepted Manuscript online:
21 February 2023
Article published online:
17 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Baran PS. J. Am. Chem. Soc. 2018; 140: 4751
- 1b Peters DS, Pitts CR, McClymont KS, Stratton TP, Bi C, Baran PS. Acc. Chem. Res. 2021; 54: 605
- 1c Nicolaou KC, Snyder SA. PNAS 2004; 101: 11929
- 1d Wilson RM, Danishefsky SJ. J. Org. Chem. 2006; 71: 8329
- 2a Thomas EJ, Willis M. Org. Biomol. Chem. 2014; 12: 7537
- 2b Chapman LM, Beck JC, Lacker KR, Wu L, Reisman SE. J. Org. Chem. 2018; 83: 6066
- 2c Hemmersbach L, Schmalz H.-G. Synlett 2023; 34: 238
- 3a Baars J, Grimm I, Blunk D, Neudörfl J.-M, Schmalz H.-G. Angew. Chem. Int. Ed. 2021; 60: 14915
- 3b Movahhed S, Westphal J, Kempa A, Schumacher CE, Sperlich J, Neudörfl J.-M, Teusch N, Hochgürtel M, Schmalz H.-G. Chem. Eur. J. 2021; 27: 11574
- 3c Ratsch F, Schlundt W, Albat D, Zimmer A, Neudörfl J.-M, Netscher T, Schmalz H.-G. Chem. Eur. J. 2019; 25: 4941
- 3d Kerl T, Berger F, Schmalz H.-G. Chem. Eur. J. 2016; 22: 2935
- 4a Vértesy L, Kurz M, Paulus EF, Schummer D, Hammann P. J. Antibiot. 2001; 54: 354
- 4b Kurz M, Paulus EF, Vértesy L. Patent WO 01/30736 A2, 1999
- 4c Ramakrishna NV. S, Swamy SH. K, Kushwaha MM. S, Kota MR, Deshmukh SK, Schummer D, Kurz M, Kogler H. Patent WO 99/67408 A1, 1999
- 5 Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J. J. Nat. Prod. 2001; 64: 1444
- 6 Kulanthaivel P, Hallock YF, Boros C, Hamilton SM, Janzen WP, Ballas LM, Loomis CR, Jiang JB, Katz B. J. Am. Chem. Soc. 1993; 115: 6452
- 7a Hollinshead SP, Nichols JB, Wilson JW. J. Org. Chem. 1994; 59: 6703
- 7b Lampe JW, Hughes PF, Biggers CK, Smith SH, Hu H. J. Org. Chem. 1994; 59: 5147
- 7c Nicolaou KC, Bunnage ME, Koide K. J. Am. Chem. Soc. 1994; 116: 8402
- 7d Adams CP, Fairway SM, Hardy CJ, Hibbs DE, Hursthouse MB, Morley AD, Sharp BW, Vicker N, Warner I. J. Chem Soc., Perkin Trans. 1 1995; 2355
- 7e Nicolaou KC, Koide K, Bunnage ME. Chem. Eur. J. 1995; 1: 454
- 7f Barbier P, Stadlwieser J. Chimia 1996; 50: 530
- 7g Miyabe H, Torieda M, Kiguchi T, Naito T. Synlett 1997; 580
- 7h Tanner D, Tedenborg L, Almario A, Pettersson I, Csöregh I, Kelly NM, Andersson PG, Högberg T. Tetrahedron 1997; 53: 4857
- 7i Miyabe H, Torieda M, Inoue K, Tajiri K, Kiguchi T, Naito T. J. Org. Chem. 1998; 63: 4397
- 7j Laursen B, Denieul M.-P, Skrydstrup T. Tetrahedron 2002; 58: 2231
- 7k Patil ML, Deshpande VH, Ramlingam S, Borate HB. Tetrahedron 2004; 60: 1869
- 7l Srivastava AK, Panda G. Chem. Eur. J. 2008; 14: 4675
- 8 Heaney H. In Comprehensive Organic Synthesis, Vol. 2. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 733
- 9a Salem G, Raston CL. Preparation and Use of Grignard and Group II Organometallics in Organic Synthesis. In The Chemistry of the Metal Carbon Bond: The Use of Organometallic Compounds in Organic Synthesis, Vol. 4. Hartley FR. Wiley; Chichester: 1987. 159
- 9b O’Neill BT. In Comprehensive Organic Synthesis, Vol. 1. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 397
- 10a Ishiyama T, Kizaki H, Hayashi T, Suzuki A, Miyaura N. J. Org. Chem. 1998; 63: 4726
- 10b O’Keefe BM, Simmons N, Martin SF. Org. Lett. 2008; 10: 5301
- 10c Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
- 10d Bhattacherjee D, Rahman M, Ghosh S, Bagdi AK, Zyryanov GV, Chupakhin ON, Das P, Hajra A. Adv. Synth. Cat. 2021; 363: 1597
- 11a Verheyen T, van Turnhout L, Vandavasi JK, Isbrandt ES, De Borggraeve WM, Newman SG. J. Am. Chem. Soc. 2019; 141: 6869
- 11b Chuzel O, Roesch A, Genet J.-P, Darses S. J. Org. Chem. 2008; 73: 7800
- 12 Tojo G, Fernandez M. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice. Springer; New York: 2006
- 13 For a review, see: Gulati U, Gandhi R, Laha JK. Chem. Asian J. 2020; 15: 3135
- 14 Denieul M.-P, Laursen B, Hazell R, Skrydstrup T. J. Org. Chem. 2000; 65: 6052
- 15a Gardikis Y, Tsoungas PG, Potamitis C, Zervou M, Cordopatis P. Heterocycles 2011; 83: 1077
- 15b Gardikis Y, Tsoungas PG, Potamitis C, Pairas G, Zervou M, Cordopatis P. Heterocycles 2011; 83: 1291
- 17 Korb M, Lang H. Chem. Soc. Rev. 2019; 48: 2829
- 18a Tahanian E, Lord-Dufour S, Das A, Khosla C, Roy R, Annabi B. Chem. Biol. Drug Des. 2010; 75: 481
- 18b Wei Q, Qian Y, Yu J, Wong CC. Oncogene 2020; 39: 6139
- 19 Lessmann H, Krupa J, Lackner H, Jones PG. Z. Naturforsch. B 1989; 44b: 353
- 20 For a review, see: Mal D, Pahari P. Chem. Rev. 2007; 107: 1892
- 21 Kaiser F, Schwink L, Velder J, Schmalz HG. J. Org. Chem. 2002; 67: 9248
- 22 Kaiser F, Schwink L, Velder J, Schmalz HG. Tetrahedron 2003; 59: 3201
- 23 Krohn K, Diederichs J, Riaz M. Tetrahedron 2006; 62: 1223
- 24 Sucunza D, Dembkowski D, Neufeind S, Velder J, Lex J, Schmalz H.-G. Synlett 2007; 2569
- 25a Shimizu M, Kawamoto M, Niwa Y. Chem. Commun. 1999; 1151
- 25b Trost BM, Wrobleski ST, Chisholm JD, Harrington PE, Jung M. J. Am. Chem. Soc. 2005; 127: 13589
- 26a Lee TS, Das A, Khosla C. Bioorg. Med. Chem. 2007; 15: 5207
- 26b Lord-Dufour S, Copland IB, Levros LC, Post M, Das A, Khosla C, Galipeau J, Rassart E, Annabi B. Stem Cells 2009; 27: 489
- 27 Neufeind S, Hülsken N, Neudörfl JM, Schlörer N, Schmalz H.-G. Chem. Eur. J. 2011; 17: 2633
- 28 Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
- 29 Hülsken N. Dissertation 2014
- 30 Kaiser F, Schmalz H.-G. Tetrahedron 2003; 59: 7345
- 31 Iijima D, Tanaka D, Hamada M, Ogamino T, Ishikawa Y, Nishiyama S. Tetrahedron Lett. 2004; 45: 5469
- 32 Cvengros J, Schütte J, Schlörer N, Neudörfl J, Schmalz H.-G. Angew. Chem. Int. Ed. 2009; 48: 6148
- 33a Schütte J, Ye S, Schmalz H.-G. Synlett 2011; 2725
- 33b Tada A, Tokoro Y, Fukuzawa S.-i. J. Org. Chem. 2014; 79: 7905
- 34 Slavov N, Cvengros J, Neudörfl JM, Schmalz H.-G. Angew. Chem. Int. Ed. 2010; 49: 7588
- 35a Soicke A, Slavov N, Neudörfl J.-M, Schmalz H.-G. Synlett 2011; 2487
- 35b Ludwig JR, Schindler CS. Synlett 2017; 28: 1501
- 36a Majdalani A, Schmalz H.-G. Synlett 1997; 1303
- 36b Cvengros J, Neufeind S, Becker A, Schmalz H.-G. Synlett 2008; 1993
- 37 Augner D, Krut O, Slavov N, Gerbino DC, Sahl H.-G, Benting J, Nising CF, Hillebrand S, Krönke M, Schmalz H.-G. J. Nat. Prod. 2013; 76: 1519
- 38 Gerbino DC, Augner D, Slavov N, Schmalz H.-G. Org. Lett. 2012; 14: 2338
- 39a Li E, Jiang L, Guo L, Zhang H, Che Y. Bioorg. Med. Chem. 2008; 16: 7894
- 39b See also: Luo M, Wang M, Chang S, He N, Shan G, Xie Y. Antibiotics 2022; 11: 1304
- 40 Augner D, Gerbino DC, Slavov N, Neudörfl JM, Schmalz H.-G. Org. Lett. 2011; 13: 5374
- 41 Almeida C, Hemberger Y, Schmitt SM, Bouhired S, Natesan L, Kehraus S, Dimas K, Gütschow M, Bringmann G, König GM. Chem. Eur. J. 2012; 18: 8827
- 42 Augner D, Schmalz H.-G. Synlett 2015; 26: 1395
- 43 Min C, Lin Y, Seidel D. Angew. Chem. Int. Ed. 2017; 56: 15353
- 44 Igboeli HA, Marchbank DH, Correa H, Russell DO, Kerr G. Mar. Drugs 2019; 17: 435
- 45 Schmalz H.-G. Preprints 2019; preprint
- 46 Ley SV, Cranwell PB. Synfacts 2011; 2: 122
- 47a Donia M, Hamann MT. Lancet Infect. Dis. 2003; 3: 338
- 47b Hughes CC, Fenical W. Chem. Eur. J. 2010; 16: 12512
- 47c Villa FA, Gerwick L. Immunopharmacol. Immunotoxicol. 2010; 32: 228
- 47d Imhoff JF, Labes A, Wiese J. Biotechnol. Adv. 2011; 29: 468
- 47e Milshteyn A, Schneider JS, Brady SF. Chem. Biol. 2014; 21: 1211
- 48 Quinkert G. Angew. Chem., Int. Ed. Engl. 1978; 17: 473
For selected examples, see:
See, for instance: