RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2023; 34(13): 1626-1630
DOI: 10.1055/a-2047-9765
DOI: 10.1055/a-2047-9765
letter
Dess–Martin Periodinane/Brønsted Acid-Mediated Tandem Oxidation/Cyclization of Homopropargylic Alcohols for Synthesis of Trisubstituted Furans
Abstract
A facile, efficient, and metal-free single-flask procedure for the synthesis of trisubstituted furans from simple readily available homopropargylic alcohols is described. A combination of Dess–Martin periodinane, H2O, and TsOH·H2O plays a crucial role in the formation of the trisubstituted furans. The advantages of this method include operational ease, mild reaction conditions, and good functional-group tolerance.
Key words
furans - Dess–Martin oxidation - 5-endo-dig cyclization - Brønsted acids - homopropargylic alcoholsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2047-9765.
- Supporting Information
Publikationsverlauf
Eingereicht: 16. Februar 2023
Angenommen nach Revision: 06. März 2023
Accepted Manuscript online:
06. März 2023
Artikel online veröffentlicht:
20. März 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Keay BA, Hopkins JM, Dibble PW. Comprehensive Heterocyclic Chemistry III, Vol. 3. Katritzky A, Scriven E, Ramsden C, Taylor R. Elsevier; Amsterdam: 2008. Chap. 3.08; 57
- 2a Lee H.-K, Chan K.-F, Hui C.-W, Yim H.-K, Wu X.-W, Wong HN. C. Pure Appl. Chem. 2005; 77: 139
- 2b Tichenor MS, Boger DL. Nat. Prod. Rep. 2008; 25: 220
- 2c Makarov A, Uchuskin M, Trushkov I. Synthesis 2018; 50: 3059
- 2d Greve S, Friedrichsen W. Prog. Heterocycl. Chem. 2000; 12: 134
- 2e Fejedelem Z, Carney N, Nagorny P. J. Org. Chem. 2021; 86: 10249
- 3a Moreau C, Belgacem MN, Gandini A. Top. Catal. 2004; 27: 11
- 3b Tong X, Ma Y, Li Y. Appl. Catal., A 2010; 385: 1
- 3c Gandini A. Polym. Chem. 2010; 1: 245
- 3d Gidron O, Dadvand A, Sheynin Y, Bendikov M, Perepichka DF. Chem. Commun. 2011; 47: 1976
- 4a Lipshutz BH. Chem. Rev. 1986; 86: 795
- 4b Balme G, Bouyssi D, Monteiro N. Heterocycles 2007; 73: 87
- 5a Hou XL, Cheung HY, Hon TY, Kwan PL, Lo TH, Tong SY, Wong HN. C. Tetrahedron 1998; 54: 1955
- 5b Kirsch SF. Org. Biomol. Chem. 2006; 4: 2076
- 8a Oh CH, Park HM, Park DI. Org. Lett. 2007; 9: 1191
- 8b Zhan H, Lin X, Qiu Y, Du Z, Li P, Li Y, Cao H. Eur. J. Org. Chem. 2013; 2284
- 8c Xia Y, Qu S, Xiao Q, Wang ZX, Qu P, Chen L, Liu Z, Tian L, Huang Z, Zhang Y, Wang J. J. Am. Chem. Soc. 2013; 135: 13502
- 8d Xia Y, Ge R, Chen L, Liu Z, Xiao Q, Zhang Y, Wang J. J. Org. Chem. 2015; 80: 7856
- 8e Xia Y, Liu Z, Ge R, Xiao Q, Zhang Y, Wang J. Chem. Commun. 2015; 51: 11233
- 8f Zheng Y, Bao M, Yao R, Qiu L, Xu X. Chem. Commun. 2018; 54: 350
- 8g Masal DP, Choudhury R, Singh A, Reddy DS. J. Org. Chem. 2022; 87: 556
- 9a Barluenga J, Riesgo L, Vicente R, López LA, Tomás M. J. Am. Chem. Soc. 2007; 129: 7772
- 9b Barluenga J, Riesgo L, Vicente R, López LA, Tomás M. J. Am. Chem. Soc. 2008; 130: 13528
- 9c Yang J, Wang C, Xie X, Li H, Li E, Li Y. Org. Biomol. Chem. 2011; 9: 1342
- 9d Cao H, Zhan H, Cen J, Lin J, Lin Y, Zhu Q, Fu M, Jiang H. Org. Lett. 2013; 15: 1080
- 9e Gabriele B, Veltri L, Plastina P, Mancuso R, Vetere MV, Maltese V. J. Org. Chem. 2013; 78: 4919
- 9f Hu F, Xia Y, Ma C, Zhang Y, Wang J. Org. Lett. 2014; 16: 4082
- 9g Yu Y, Yi S, Zhu C, Hu W, Gao B, Chen Y, Wu W, Jiang H. Org. Lett. 2016; 18: 400
- 9h Hu F, Xia Y, Ma C, Zhang Y, Wang J. J. Org. Chem. 2016; 81: 3275
- 9i Yang J.-M, Li Z.-Q, Li M.-L, He Q, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2017; 139: 3784
- 9j Hamal KB, Chalifoux WA. J. Org. Chem. 2017; 82: 12920
- 9k Pei C, Rong G.-W, Yu Z.-X, Xu X.-F. J. Org. Chem. 2018; 83: 13243
- 9l Pankova AS. Chem. Heterocycl. Compd. 2020; 56: 829
- 10a Sniady A, Durham A, Morreale MS, Wheeler KA, Dembinski R. Org. Lett. 2007; 9: 1175
- 10b Sniady A, Durham A, Morreale MS, Marcinek A, Szafert S, Lis T, Brzezinska KR, Iwasaki T, Ohshima T, Mashima K, Dembinski R. J. Org. Chem. 2008; 73: 5881
- 10c Vicente R, González J, Riesgo L, González J, López LA. Angew. Chem. Int. Ed. 2012; 51: 8063
- 10d González MJ, López LA, Vicente R. Org. Lett. 2014; 16: 5780
- 10e González J, González J, Pérez-Calleja C, López LA, Vicente R. Angew. Chem. Int. Ed. 2013; 52: 5853
- 10f Song B, Li L.-H, Song X.-R, Qiu Y.-F, Zhong M.-J, Zhou P.-X, Liang Y.-M. Chem. Eur. J. 2014; 20: 5910
- 10g González J, López LA, Vicente R. Chem. Commun. 2014; 50: 8536
- 10h Mata S, González MJ, González J, López LA, Vicente R. Chem. Eur. J. 2017; 23: 1013
- 11 Blanc A, Bénéteau V, Weibel J.-M, Pale P. Org. Biomol. Chem. 2016; 14: 9184
- 12a Hashmi AS. K. Chem. Rev. 2007; 107: 3180
- 12b Li Z, Brouwer C, He C. Chem. Rev. 2008; 108: 3239
- 12c Egi M, Azechi K, Akai S. Org. Lett. 2009; 11: 5002
- 12d Wang T, Zhang J. Dalton Trans. 2010; 39: 4270
- 12e Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
- 12f Hoffmann M, Miaskiewicz S, Weibel J.-M, Pale P, Blanc A. Beilstein J. Org. Chem. 2013; 9: 1774
- 12g Ma J, Jiang H, Zhu S. Org. Lett. 2014; 16: 4472
- 12h Ferrand L, Neves ND, Malacria M, Mouries-Mansuy V, Ollivier C, Fensterbank L. J. Organomet. Chem. 2015; 795: 53
- 12i Zheng Y, Chi Y, Bao M, Qiu L, Xu X. J. Org. Chem. 2017; 82: 2129
- 12j Nejrotti S, Prandi C. Synthesis 2021; 53: 1046
- 13a Kato Y, Miki K, Nishino F, Ohe K, Uemura S. Org. Lett. 2003; 5: 2619
- 13b Miki K, Washitake Y, Ohe K, Uemura S. Angew. Chem. Int. Ed. 2004; 43: 1857
- 13c Miki K, Kato Y, Uemura S, Ohe K. Bull. Chem. Soc. Jpn. 2008; 81: 1158
- 13d González MJ, López E, Vicente R. Chem. Commun. 2014; 50: 5379
- 13e Xia Y, Chen L, Qu P, Ji G, Feng S, Xiao Q, Zhang Y, Wang J. J. Org. Chem. 2016; 81: 10484
- 13f Zhu D, Ma J, Luo K, Fu H, Zhang L, Zhu S. Angew. Chem. Int. Ed. 2016; 55: 8452
- 14a Miki K, Nishino F, Ohe K, Uemura S. J. Am. Chem. Soc. 2002; 124: 5260
- 14b Miki K, Yokoi T, Nishino F, Kato Y, Washitake Y, Ohe K, Uemura S. J. Org. Chem. 2004; 69: 1557
- 14c Miki K, Uemura S, Ohe K. Chem. Lett. 2005; 34: 1068
- 15 Brown CD, Chong JM, Shen L. Tetrahedron 1999; 55: 14233
- 16 Du X, Chen H, Liu Y. Chem. Eur. J. 2008; 14: 9495
- 17 Hrizi A, Thiery E, Romdhani-Younes M, Jacquemin J, Thibonnet J. Eur. J. Org. Chem. 2021; 3798
- 18a Sniady A, Wheeler KA, Dembinski R. Org. Lett. 2005; 7: 1769
- 18b Yao T, Zhang X, Larock RC. J. Org. Chem. 2005; 70: 7679
- 19 Kondoh A, Aita K, Ishikawa S, Terada M. Org. Lett. 2020; 22: 2105
- 20 Cheng G, Hu Y. Chem. Commun. 2007; 3285
- 21 Horino Y, Murakami M, Ishibashi M, Lee JH, Watanabe A, Matsumoto R, Abe H. Org. Lett. 2019; 21: 9564
- 22a Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
- 22b Dess DB, Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
- 22c Meyer SD, Schreiber SL. J. Org. Chem. 1994; 59: 7549
- 23 5-Ethyl-3-(2-methoxyphenyl)-2-phenylfuran (2b); Typical Procedure Homopropargylic alcohol 1b (0.3 mmol) and TsOH·H2O (5 mol%) were dissolved in anhyd CH2Cl2 (3 mL) under argon in a 10 mL vial equipped with a magnetic stirrer bar and a septum. Distilled H2O (0.9 mmol) and Dess–Martin periodinane (0.6 mmol) were successively added to the stirred solution at ambient temperature. The septum was replaced with a screw cap under argon, and the resulting mixture (0.1 M) was stirred in an oil bath at 30 °C for 60 h until the reaction was complete (TLC). The reaction was quenched with sat. aq NaHCO3 (1 mL) and Na2S2O3 (1 mL), and the resulting mixture was stirred for 30 min. The separated aqueous layer was extracted with CHCl3, and the combined organic layers were washed with brine, dried (MgSO4), and concentrated in vacuo. The resulting crude residue was purified by flash chromatography (silica gel) to give a colorless oil; yield: 60.1 mg (72%), Rf = 0.59 (EtOAc–hexane, 3:7). 1H NMR (400 MHz, CDCl3): δ = 7.51 (dd, J = 1.2, 8.4 Hz, 2 H), 7.41–7.28 (m, 4 H), 7.22 (tt, J = 1.2, 7.6 Hz, 1 H), 7.03 (d, J = 7.2 Hz, 2 H), 6.20 (t, J = 1.2 Hz, 1 H), 3.77 (s, 3 H), 2.83 (dq, J = 1.2, 7.2 Hz, 2 H), 1.39 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 156.7, 156.5, 147.4, 132.1, 131.5, 128.8, 128.2, 126.7, 125.3, 123.9, 120.8, 119.0, 111.3, 109.6, 55.5, 21.6, 12.2. HRMS (ESI-TOF): m/z [M + H]+ calcd for C19H19O2: 279.1385; found: 279.1391.
- 24a Piancatelli G, Scettri A, D’Auria M. Tetrahedron 1980; 36: 661
- 24b Yadav JS, Krishna PR, Gurjar MK. Tetrahedron 1989; 45: 6263
- 24c Kobayashi Y, Nakano M, Kumar GB, Kishihara K. J. Org. Chem. 1998; 63: 7505 ; see also ref. 4a
For selected examples of oxidative ring-opening reaction of furans see: