RSS-Feed abonnieren
DOI: 10.1055/a-2058-8883
Klimakrise: Welche gastroenterologischen Folgeerkrankungen dieses medizinischen Notfalls sollten wir kennen?
Climate Crisis: What Gastrointestinal Complications of this Medical Emergency Should We Be Aware Of?Zusammenfassung
Einleitung Die Klimakrise hat gravierende Folgen für viele Lebensbereiche. Ganz besonders gilt dies für die Gesundheit des Menschen – auch in Europa. Während kardiovaskuläre, pneumologische und dermatologische Erkrankungen mit Bezug auf die Klimakrise häufig diskutiert werden, sind gastroenterologische Erkrankungen als Folge der Krise ebenfalls von erheblicher Bedeutung.
Methoden Anhand einer Literaturrecherche (Pubmed, Cochrane Library) wurden für die Gastroenterologie in (Mittel-)Europa relevante Arbeiten identifiziert. Diese Arbeiten wurden von einem interdisziplinären Team um weitere Arbeiten ergänzt und zusammengefasst.
Ergebnisse Die Klimakrise hat in Europa durch vermehrte Hitzewellen, Hochwasser und Luftverschmutzung Einfluss auf die Häufigkeit und Schwere von Erkrankungen des Gastrointestinaltraktes. Dabei sind Patienten mit Darmerkrankungen besonders vulnerabel für akute Wetterereignisse. Hinsichtlich der Langzeitfolgen des Klimawandels haben gastrointestinale Karzinome und Lebererkrankungen eine herausragende Bedeutung. Neben Gastroenteritiden sind weitere durch die stetige Erwärmung, Hitzewellen und Überschwemmungen begünstigte Infektionskrankheiten wie vektorübertragene Erkrankungen und Parasiten von Bedeutung.
Diskussion Für vulnerable Patientengruppen sind konsequent Anpassungsstrategien zu entwickeln und umzusetzen. Risikopersonen müssen hinsichtlich individuell umsetzbarer Maßnahmen wie Hitzevermeidung, entsprechendem Trinkverhalten und Hygiene beraten werden. Zur Prävention von Lebererkrankungen und Karzinomen sind in erster Linie Empfehlungen zur physischen Aktivität und gesunden nachhaltigen Ernährung sinnvoll. Maßnahmen zur Prävention und Resilienzförderung können von der Ärzteschaft auf verschiedenen Ebenen unterstützt werden. Neben Bemühungen zu Nachhaltigkeit im unmittelbaren eigenen Arbeitsumfeld ist ein übergeordnetes Engagement für Klimaschutz von Bedeutung.
Abstract
Introduction The climate crisis has serious consequences for many areas of life. This applies in particular to human health – also in Europe. While cardiovascular, pneumological and dermatological diseases related to the climate crisis are often discussed, the crisis’ significant gastroenterological consequences for health must also be considered.
Methods A literature search (Pubmed, Cochrane Library) was used to identify papers with relevance particularly to the field of gastroenterology in (Central) Europe. Findings were supplemented and discussed by an interdisciplinary team.
Results The climate crisis impacts the frequency and severity of gastrointestinal diseases in Europe due to more frequent and severe heat waves, flooding and air pollution. While patients with intestinal diseases are particularly vulnerable to acute weather events, the main long-term consequences of climate change are gastrointestinal cancer and liver disease. In addition to gastroenteritis, other infectious diseases such as vector-borne diseases and parasites are important in the context of global warming, heat waves and floods.
Discussion Adaptation strategies must be consistently developed and implemented for vulnerable groups. Patients at risk should be informed about measures that can be implemented individually, such as avoiding heat, ensuring appropriate hydration and following hygiene instructions. Recommendations for physical activity and a healthy and sustainable diet are essential for the prevention of liver diseases and carcinomas. Measures for prevention and the promotion of resilience can be supported by the physicians at various levels. In addition to efforts fostering sustainability in the immediate working environment, a system-oriented commitment to climate protection is important.
Publikationsverlauf
Eingereicht: 31. August 2022
Angenommen nach Revision: 20. März 2023
Artikel online veröffentlicht:
12. April 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Rakovec O, Samaniego L, Hari V. et al. The 2018–2020 Multi-Year Drought Sets a New Benchmark in Europe. Earth’s Futur 2022; 10: e2021EF002394
- 2 Raupach TH, Martius O, Allen JT. et al. The effects of climate change on hailstorms. Nature Reviews Earth & Environment 2021; 2: 213-226
- 3 Muthers S, Laschewski G, Matzarakis A. The Summers 2003 and 2015 in South-West Germany: Heat Waves and Heat-Related Mortality in the Context of Climate Change. Atmos 2017; 8: 224
- 4 Zhao Q, Guo Y, Ye T. et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet Heal 2021; 5: e415-e425
- 5 Romanello M, McGushin A, Di Napoli C. et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet 2021; 398: 1619-1662
- 6 Mezger NCS, Thöne M, Wellstein I. et al. Climate protection in practices – current status, motivation and challenges in outpatient care. Z Evid Fortbild Qual Gesundhwes 2021; 166: 44-54
- 7 Setoguchi S, Leddin D, Metz G. et al. Climate Change, Health, and Health Care Systems: A Global Perspective. Gastroenterology 2022; 162: 1549-1555
- 8 Wabnitz K, Galle S, Hegge L. et al. Planetary health—transformative education regarding the climate and sustainability crises for health professionals. Bundesgesundheitsblatt – Gesundheitsforsch – Gesundheitsschutz 2021; 64: 378-383
- 9 Bundesärztekammer (Arbeitsgemeinschaft der deutschen Ärztekammern). Beschlussprotokoll des 125. Deutschen Ärztetages, Berlin, 01. bis 02.11.2021. In: Wiebke Pühler, Martina Kettner, Angelika Regel, et al., Hrsg. 2021
- 10 Swart R, Amann M, Raes F. et al. A Good Climate for Clean Air: Linkages between Climate Change and Air Pollution. An Editorial Essay. Clim Chang 2004; 66: 263-269
- 11 Manser CN, Paul M, Rogler G. et al. Heat waves, incidence of infectious gastroenteritis, and relapse rates of inflammatory bowel disease: A retrospective controlled observational study. Am J Gastroenterol 2013; 108: 1480-1485
- 12 Sherbakov T, Malig B, Guirguis K. et al. Ambient temperature and added heat wave effects on hospitalizations in California from 1999 to 2009. Environ Res 2018; 160: 83-90
- 13 Morral-Puigmal C, Martínez-Solanas È, Villanueva CM. et al. Weather and gastrointestinal disease in Spain: A retrospective time series regression study. Environ Int 2018; 121: 649-657
- 14 Milazzo A, Giles LC, Zhang Y. et al. Heatwaves differentially affect risk of Salmonella serotypes. J Infect 2016; 73: 231-240
- 15 Liang M, Ding X, Wu Y. Temperature and Risk of Infectious Diarrhea: A Systematic Review and Meta-analysis. 2021;
- 16 Milazzo A. The relationship between warm season temperatures and heatwaves on the incidence of Salmonella and Campylobacter cases in Adelaide, South Australia. 2017
- 17 Nichols G, Lake I, Heaviside C. Climate Change and Water-Related Infectious Diseases. Atmos 2018; 9: 385
- 18 Masciopinto C, De Giglio O, Scrascia M. et al. Human health risk assessment for the occurrence of enteric viruses in drinking water from wells: Role of flood runoff injections. Sci Total Environ 2019; 666: 559-571
- 19 Lynch VD, Shaman J. The effect of seasonal and extreme floods on hospitalizations for Legionnaires’ disease in the United States, 2000–2011. BMC Infect Dis 2022; 22: 1-14
- 20 Lau CL, Townell N, Stephenson E. et al. Leptospirosis: An important zoonosis acquired through work, play and travel. Aust J Gen Pract 2018; 47: 105-110
- 21 Gao L, Zhang Y, Ding G. et al. Projections of hepatitis A virus infection associated with flood events by 2020 and 2030 in Anhui Province, China. Int J Biometeorol 2016; 60: 1873-1884
- 22 Babaie J, Ardalan A, Vatandoost H. et al. Performance assessment of communicable disease surveillance in disasters: a systematic review. PLoS Curr 2015; 7
- 23 Andrade L, O’Dwyer J, O’Neill E. et al. Surface water flooding, groundwater contamination, and enteric disease in developed countries: A scoping review of connections and consequences. Environ Pollut 2018; 236: 540-549
- 24 Gertler M, Dürr M, Renner P. et al. Outbreak of following river flooding in the city of Halle (Saale), Germany, August 2013. BMC Infect Dis 2015; 15: 1-10
- 25 Abraham W-R. Schadstoffbelastung nach dem Elbe-Hochwasser 2002 Endbericht des Ad-hoc-Projekts „Schadstoffuntersuchungen nach dem Hochwasser vom August 2002-Ermittlung der Gefährdungspotentiale an Elbe und Mulde“ BMBF-Förderkennzeichen PTJ 0330492 Projektleitung und Koordination. 2002
- 26 Siegmund B. 9 Gastroenterologie – Intestinale Inflammation. In: Traidl-Hoffmann C, Schulz C, Herrmann M, et al., Hrsg. Planetary Health Klima, Umwelt und Gesundheit im Anthropozän. MWV Medizinisch Wissenschaftliche Verlagsgesellschaft. 2021
- 27 Elten M, Benchimol EI, Fell DB. et al. Ambient air pollution and the risk of pediatric-onset inflammatory bowel disease: A population-based cohort study. Environ Int 2020; 138: 105676
- 28 Kaplan GG, Hubbard J, Korzenik J. et al. The Inflammatory Bowel Diseases and Ambient Air Pollution: A Novel Association. Am J Gastroenterol 2010; 105: 2412
- 29 Li F-R, Wu K-Y, Fan W-D. et al. Long-term exposure to air pollution and risk of incident inflammatory bowel disease among middle and old aged adults. Ecotoxicol Environ Saf 2022; 242: 113835
- 30 Ananthakrishnan AN, McGinley EL, Binion DG. et al. Ambient air pollution correlates with hospitalizations for inflammatory bowel diseaseAn ecologic analysis. Inflamm Bowel Dis 2011; 17: 1138-1145
- 31 Ding S, Sun S, Ding R. et al. Association between exposure to air pollutants and the risk of inflammatory bowel diseases visits. Environ Sci Pollut Res 2022; 29: 17645-17654
- 32 Seo HS, Hong J, Jung J. et al. Relationship of meteorological factors and air pollutants with medical care utilization for gastroesophageal reflux disease in urban area. World J Gastroenterol 2020; 26: 6074-6086
- 33 Duan R, Tian Y, Hu Y. et al. Exploring the association between short-term exposure to ambient fine particulate matter pollution and emergency admissions for peptic ulcer bleeding in Beijing, China. Atmos Environ 2019; 213: 485-490
- 34 Tian L, Qiu H, Sun S. et al. Association between emergency admission for peptic ulcer bleeding and air pollution: a case-crossover analysis in Hong Kong’s elderly population. Lancet Planet Heal 2017; 1: e74-e81
- 35 Quan S, Yang H, Tanyingoh D. et al. Upper gastrointestinal bleeding due to peptic ulcer disease is not associated with air pollution: A case-crossover study. BMC Gastroenterol 2015; 15: 1-7
- 36 Yin J, Wu X, Li S. et al. Impact of environmental factors on gastric cancer: A review of the scientific evidence, human prevention and adaptation. J Environ Sci (China) 2020; 89: 65-79
- 37 Weinmayr G, Pedersen M, Stafoggia M. et al. Particulate matter air pollution components and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts of Air Pollution Effects (ESCAPE). Environ Int 2018; 120: 163-171
- 38 Jenwitheesuk K, Peansukwech U, Jenwitheesuk K. Accumulated ambient air pollution and colon cancer incidence in Thailand. Sci Reports 2020; 10: 1-12
- 39 Soerjomataram I, Bray F. Planning for tomorrow: global cancer incidence and the role of prevention 2020–2070. Nat Rev Clin Oncol 2021; 18: 663-672
- 40 Fanzo JC, Downs SM. Climate change and nutrition-associated diseases. Nat Rev Dis Prim 2021; 7: 1-2
- 41 Farrell P, Thow AM, Abimbola S. et al. How food insecurity could lead to obesity in LMICsWhen not enough is too much: a realist review of how food insecurity could lead to obesity in low- and middle-income countries. Health Promot Int 2018; 33: 812-826
- 42 Trentinaglia MT, Parolini M, Donzelli F. et al. Climate change and obesity: A global analysis. Glob Food Sec 2021; 29: 100539
- 43 Younossi ZM. Non-alcoholic fatty liver disease – A global public health perspective. J Hepatol 2019; 70: 531-544
- 44 Donnelly MC, Stableforth W, Krag A. et al. The Negative Bidirectional Interaction Between Climate Change and the Prevalence and Care of Liver Disease: A Joint BSG, BASL, EASL, and AASLD Commentary. Gastroenterology 2022; 162: 1561-1567
- 45 Anstee QM, Reeves HL, Kotsiliti E. et al. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 2019; 16: 411-428
- 46 So R, Chen J, Mehta AJ. et al. Long-term exposure to air pollution and liver cancer incidence in six European cohorts. Int J Cancer 2021; 149: 1887-1897
- 47 Thorne AM, Ubbink R, Bruggenwirth IMA. et al. Hyperthermia-induced changes in liver physiology and metabolism: a rationale for hyperthermic machine perfusion. Am J Physiol Gastrointest Liver Physiol 2020; 319: G43-G50
- 48 Davis BC, Tillman H, Chung RT. et al. Heat stroke leading to acute liver injury & failure: A case series from the Acute Liver Failure Study Group. Liver Int 2017; 37: 509-513
- 49 Peters L, Burkert S, Grüner B. Parasites of the liver – epidemiology, diagnosis and clinical management in the European context. J Hepatol 2021; 75: 202-218
- 50 Prueksapanich P, Piyachaturawat P, Aumpansub P. et al. Liver Fluke-Associated Biliary Tract Cancer. Gut Liver 2018; 12: 236-245
- 51 Selstad Utaaker K, Robertson LJ. Climate change and foodborne transmission of parasites: A consideration of possible interactions and impacts for selected parasites. Food Res Int 2015; 68: 16-23
- 52 Mas-Coma S, Valero MA, Bargues MD. Effects of climate change on animal and zoonotic helminthiases. OIE Rev Sci Tech 2008; 27: 443-457
- 53 Blum AJ, Hotez PJ. Global “worming”: Climate change and its projected general impact on human helminth infections. PLoS Negl Trop Dis 2018; 12
- 54 De Leo GA, Stensgaard AS, Sokolow SH. et al. Schistosomiasis and climate change. BMJ 2020; 371
- 55 da Costa CP. Infektiologie. In: Traidl-Hoffmann C, Schulz C, Herrmann M, et al., Hrsg. Planetary Health Klima, Umwelt und Gesundheit im Anthropozän. Berlin: MWV Medizinisch Wissenschaftliche Verlagsgesellschaft. 2021
- 56 Pozio E. How globalization and climate change could affect foodborne parasites. Exp Parasitol 2020; 208
- 57 Fox NJ, White PCL, McClean CJ. et al. Predicting Impacts of Climate Change on Fasciola hepatica Risk. PLoS One 2011; 6: e16126
- 58 Caravedo MA, Cabada MM. Human Fascioliasis: Current Epidemiological Status and Strategies for Diagnosis, Treatment, and Control. Res Rep Trop Med 2020; 11: 149
- 59 Moretti A, Pascale M, Logrieco AF. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci Technol 2019; 84: 38-40
- 60 Akello J, Ortega-Beltran A, Katati B. et al. Prevalence of Aflatoxin- and Fumonisin-Producing Fungi Associated with Cereal Crops Grown in Zimbabwe and Their Associated Risks in a Climate Change Scenario. Foods (Basel, Switzerland) 2021; 10
- 61 Battilani P, Toscano P, Van Der Fels-Klerx HJ. et al. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci Reports 2016; 6: 1-7
- 62 Leggieri MC, Toscano P, Battilani P. Predicted aflatoxin b1 increase in europe due to climate change: Actions and reactions at global level. Toxins (Basel) 2021; 13
- 63 Lederberg J, Shope RE, Oaks SC. Emerging Infections: Microbial Threats to Health in the United States. Washington, D.C.: National Academies Press; 1992
- 64 Semenza JC, Suk JE. Vector-borne diseases and climate change: a European perspective. FEMS Microbiol Lett 2018; 365: 244
- 65 Hess J, Boodram LLG, Paz S. et al. Strengthening the global response to climate change and infectious disease threats. BMJ 2020; 371
- 66 McIntyre KM, Setzkorn C, Hepworth PJ. et al. Systematic Assessment of the Climate Sensitivity of Important Human and Domestic Animals Pathogens in Europe. Sci Reports 2017; 7: 1-10
- 67 Semenza JC, Paz S. Climate change and infectious disease in Europe: Impact, projection and adaptation. Lancet Reg Heal – Eur 2021; 9: 100230
- 68 Baker-Austin C, Trinanes JA, Taylor NGH. et al. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Clim Chang 2012; 3: 73-77
- 69 Baker-Austin C, Oliver JD, Alam M. et al. Vibrio spp. infections. Nat Rev Dis Prim 2018; 4: 1-19
- 70 Brehm TT, Dupke S, Hauk G. et al. Non-cholera Vibrio species – currently still rare but growing danger of infection in the North Sea and the Baltic Sea. Internist 2021; 62: 876-886
- 71 Moreira C, Vasconcelos V, Antunes A. Cyanobacterial Blooms: Current Knowledge and New Perspectives. Earth 2022; 3: 127-135
- 72 Chorus I, Falconer IR, Salas HJ. et al. HEALTH RISKS CAUSED BY FRESHWATER CYANOBACTERIA IN RECREATIONAL WATERS. 2010; 3: 323-347
- 73 Kaiser J, Wasmund N, Kahru M. et al. Reconstructing N2-fixing cyanobacterial blooms in the Baltic Sea beyond observations using 6- And 7-methylheptadecane in sediments as specific biomarkers. Biogeosciences 2020; 17: 2579-2591
- 74 El-Shehawy R, Gorokhova E, Fernández-Piñas F. et al. Global warming and hepatotoxin production by cyanobacteria: What can we learn from experiments?. Water Res 2012; 46: 1420-1429
- 75 Rocklöv J, Dubrow R. Climate change: an enduring challenge for vector-borne disease prevention and control (Nature Immunology, (2020), 21, 5, (479–483), 10.1038/s41590–020–0648-y). Nat Immunol 2020; 21: 479-483
- 76 Caminade C, McIntyre KM, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci 2019; 1436: 157-173
- 77 Colón-González FJ, Sewe MO, Tompkins AM. et al. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study. Lancet Planet Heal 2021; 5: e404-e414
- 78 Tigermücke in Berlin gefunden, dauerhafte Ansiedlung zu befürchten (21.07.2022). Dtsch Arztebl 2022. Zugriff am 23. Juli 2022 unter: https://www.aerzteblatt.de/nachrichten/136113/Tigermuecke-in-Berlin-gefunden-dauerhafte-Ansiedlung-zu-befuerchten
- 79 Frank C, Offergeld R, Lachmann R. et al. Gekommen, um zu bleiben? Bei autochthonen West-Nil-Virus-Infektionen steht regional die Saison 2022 vor der Tür. Epidemiol Bull 2022; 18-20
- 80 Pietsch C, Michalski D, Münch J. et al. Autochthonous West Nile virus infection outbreak in humans, Leipzig, Germany, August to September 2020. Eurosurveillance 2020; 25: 1-6
- 81 Zhang L, Rohr J, Cui R. et al. Biological invasions facilitate zoonotic disease emergences. Nat Commun 2022; 13: 1-11
- 82 Carlson CJ, Albery GF, Merow C. et al. Climate change increases cross-species viral transmission risk. Nat 2022; 1-1
- 83 Mora C, McKenzie T, Gaw IM. et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat Clim Chang 2022; 1-7
- 84 Helmholtz Zentrum für Umweltforschung – UFZ. Stadtklima und Lebensqualität – Städte wärmer als ihr Umland. 2018 Zugriff am 01. August 2022 unter: https://themenspezial.eskp.de/metropolen-unter-druck/stadtklima-und-lebensqualitaet/staedte-waermer-als-ihr-umland-93764/
- 85 Jay O, Capon A, Berry P. et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet 2021; 398: 709-724
- 86 Henke KA, Alter T, Doherr MG. et al. Comparison of consumer knowledge about Campylobacter, Salmonella and Toxoplasma and their transmissibility via meat: Results of a consumer study in Germany. BMC Public Health 2020; 20: 1-17
- 87 RKI – Überschwemmungs-assoziierte Infektionskrankheiten – Infektionsrisiken in Überschwemmungsgebieten in Deutschland. Zugriff am 27. Mai 2022 unter: https://www.rki.de/DE/Content/InfAZ/U/Ueberschwemmung/Infektionsrisiken.html
- 88 Lelieveld J, Pozzer A, Pöschl U. et al. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc Res 2020; 116: 1910-1917
- 89 Vignal C, Guilloteau E, Gower-Rousseau C. et al. Review article: Epidemiological and animal evidence for the role of air pollution in intestinal diseases. Sci Total Environ 2021; 757: 143718
- 90 Schneider CV, Trautwein C. 13 Hepatologie. In: Traidl-Hoffmann C, Schulz C, Herrmann M, et al., Hrsg. Planetary Health Klima, Umwelt und Gesundheit im Anthropozän. MWV Medizinisch Wissenschaftliche Verlagsgesellschaft. 2021
- 91 Straff W, Tobollik M, Mücke H-G. Umweltmedizinische Begründung für die Bewertungsklassen und Beurteilungs-Schwellenwerte des Luftqualitätsindex (LQI) des Umweltbundesamtes. 2021
- 92 Pacifico L, Perla FM, Chiesa C. Impact of healthy plant-based diet on abdominal visceral and liver fat contents. Hepatobiliary Surg Nutr 2021; 10: 136-138
- 93 Mentella MC, Scaldaferri F, Ricci C. et al. Cancer and Mediterranean Diet: A Review. Nutr 2019; 11: 2059
- 94 Ratjen I, Morze J, Enderle J. et al. Adherence to a plant-based diet in relation to adipose tissue volumes and liver fat content. Am J Clin Nutr 2020; 112: 354-363
- 95 Mazidi M, Kengne AP. Higher adherence to plant-based diets are associated with lower likelihood of fatty liver. Clin Nutr 2019; 38: 1672-1677
- 96 Parra-Soto S, Ahumada D, Petermann-Rocha F. et al. Association of meat, vegetarian, pescatarian and fish-poultry diets with risk of 19 cancer sites and all cancer: findings from the UK Biobank prospective cohort study and meta-analysis. BMC Med 2022; 20: 1-16
- 97 Zhang S, Gu Y, Bian S. et al. Dietary patterns and risk of non-alcoholic fatty liver disease in adults: A prospective cohort study. Clin Nutr 2021; 40: 5373-5382
- 98 Donaldson MS. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr J 2004; 3: 1-21
- 99 Schneider CV., Zandvakili I, Thaiss CA. et al. Physical activity is associated with reduced risk of liver disease in the prospective UK Biobank cohort. JHEP Reports 2021; 3: 100263
- 100 Wolin KY, Yan Y, Colditz GA. et al. Physical activity and colon cancer prevention: a meta-analysis. Br J Cancer 2009; 100: 611-616
- 101 Friedenreich CM, Neilson HK, Lynch BM. State of the epidemiological evidence on physical activity and cancer prevention. Eur J Cancer 2010; 46: 2593-2604
- 102 Bernard P, Chevance G, Kingsbury C. et al. Climate Change, Physical Activity and Sport: A Systematic Review. Sport Med 2021; 51: 1041-1059
- 103 Deutsche Gesellschaft für Ernährung e. V.. 10 Regeln der DGE. 2017 Zugriff am 09. Juli 2022 unter: https://www.dge.de/index.php?id=52
- 104 Willett W, Rockström J, Loken B. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019; 393: 447-492
- 105 Herrmann A, Krolewski R. Gesundheitsberatung im Kontext von Planetary Health. In: Traidl-Hoffmann C, Schulz C, Herrmann M, et al., Hrsg. Planetary Health Klima, Umwelt und Gesundheit im Anthropozän. Berlin: MWV Medizinisch Wissenschaftliche Verlagsgesellschaft. 2021
- 106 Deutsche Diabetes Gesellschaft. Empfehlungen der DDG zur Nationalen Diabetesstrategie: Welche konkreten Maßnahmen müssen nun folgen ?. 2021
- 107 Rondoni A, Grasso S. Consumers behaviour towards carbon footprint labels on food: A review of the literature and discussion of industry implications. J Clean Prod 2021; 301: 127031
- 108 Second meeting of the International Health Regulations (2005) (IHR) Emergency Committee regarding the multi-country outbreak of monkeypox. 2022
- 109 Wu X, Lu Y, Zhou S. et al. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ Int 2016; 86: 14-23
- 110 Veitch AM, Gastroenterology R. Greener gastroenterology and hepatology: the British Society of Gastroenterology Strategy for Climate Change and Sustainability. Frontline Gastroenterol 2022; 0: 1-4
- 111 Williams JA, Kao JY, Omary MB. How Can Individuals and the GI Community Reduce Climate Change?. Gastroenterology 2020; 158: 14-17
- 112 Leddin D, Omary MB, Veitch A. et al. Uniting the Global Gastroenterology Community to Meet the Challenge of Climate Change and Nonrecyclable Waste. J Clin Gastroenterol 2021; 55: 823-829
- 113 Health For Future | Gesundheit braucht Klimaschutz. Zugriff am 27. August 2022 unter: https://healthforfuture.de/