Synthesis 2024; 56(04): 585-596
DOI: 10.1055/a-2063-0221
special topic
Synthetic Development of Key Intermediates and Active Pharmaceutical Ingredients (APIs)

An Intramolecular Radical C–N Coupling by N-Iodosuccinimide

,
,
Chandan Chittapriya Sahu
,
Prasenjit Mal
S.K.B. and R.B. thank DST (INSPIRE) and CSIR (India) for fellowships.


Abstract

A useful method for the formation of benzimidazole-fused phenanthridines through an intramolecular coupling of unactivated C(sp2)–H and N(sp3)–H bonds using N-iodosuccinimide (NIS) in trifluoroethanol (TFE) is presented. The synthesis of benzo[4,5]imidazo[1,2-f]phenanthridines from 2-([1,1′-biphenyl]-2-yl)-1H-benzo[d]imidazole derivatives is mild, efficient, and sustainable, with high yields and minimal waste generation. The control experiments and EPR studies were aimed at rationalizing the radical pathway of the reaction. Specifically, the use of 1,1-diphenylethylene, TEMPO, BHT, and DMPO as a free-radical spin-trapping reagent in EPR studies, allowed us to conceive a radical pathway. The gram-scale synthesis further supported the practical utility of the methodology for the field of synthetic chemistry.

Supporting Information



Publikationsverlauf

Eingereicht: 14. Februar 2023

Angenommen nach Revision: 27. März 2023

Accepted Manuscript online:
27. März 2023

Artikel online veröffentlicht:
20. April 2023

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Colacino E, Porcheddu A, Charnay C, Delogu F. React. Chem. Eng. 2019; 4: 1179
    • 2a Choudhuri K, Pramanik M, Mal P. J. Org. Chem. 2020; 85: 11997
    • 2b Maertens G, Deruer E, Denis M, Canesi S. J. Org. Chem. 2020; 85: 6098
    • 2c Bayeh L, Le PQ, Tambar UK. Nature 2017; 547: 196
    • 2d Duchemin N, Aubert S, de Souza JV, Bethge L, Vonhoff S, Bronowska AK, Smietana M, Arseniyadis S. JACS Au 2022; 2: 1910
    • 3a Dahiya A, Sahoo AK, Chakraborty N, Das B, Patel BK. Org. Biomol. Chem. 2022; 20: 2005
    • 3b Singh FV, Wirth T. ARKIVOC 2021; (vii): : 12
    • 3c Ghosh D, Ghosh S, Hajra A. Adv. Synth. Catal. 2021; 363: 5047
    • 3d Borah B, Chowhan LR. RSC Adv. 2021; 11: 37325
    • 3e Bagdi AK, Rahman M, Bhattacherjee D, Zyryanov GV, Ghosh S, Chupakhin ON, Hajra A. Green Chem. 2020; 22: 6632
    • 3f Pal S, Chatterjee R, Santra S, Zyryanov GV, Majee A. Adv. Synth. Catal. 2021; 363: 5300
  • 4 van der Helm MP, Klemm B, Eelkema R. Nat. Rev. Chem. 2019; 3: 491
    • 5a Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
    • 5b De Vos D, Gadde K, Maes BU. W. Synthesis 2023; 55: 193
    • 5c Vanderghinste J, Das S. Synthesis 2022; 54: 3383
  • 6 Yi D, Bayer T, Badenhorst CP. S, Wu S, Doerr M, Höhne M, Bornscheuer UT. Chem. Soc. Rev. 2021; 50: 8003
  • 7 Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
  • 8 Joule JA. Adv. Heterocycl. Chem. 2016; 119: 81
  • 9 Maiti S, Alam MT, Bal A, Mal P. Adv. Synth. Catal. 2019; 361: 4401
  • 10 Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
  • 11 Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
  • 12 Farhang M, Akbarzadeh AR, Rabbani M, Ghadiri AM. Polyhedron 2022; 227: 116124
  • 13 Heravi MM, Kheilkordi Z, Zadsirjan V, Heydari M, Malmir M. J. Organomet. Chem. 2018; 861: 17
  • 14 Li J, Zhang Y, Kuruvinashetti K, Kornienko N. Nat. Rev. Chem. 2022; 6: 303
    • 15a O’Broin CQ, Fernández P, Martínez C, Muñiz K. Org. Lett. 2016; 18: 436
    • 15b Cao H, Cheng Q, Studer A. Science 2022; 378: 779
    • 15c Sosnicki JG, Borzyszkowska-Ledwig A, Idzik TJ, Lubowicz MM, Maciejewska G, Struk L. Org. Lett. 2022; 24: 8498
    • 15d Sun L, Cui J, Nie S, Xie L, Wang Y, Wu L. Eur. J. Org. Chem. 2022; e202200505
    • 15e Yang M, Hua J, Wang H, Ma T, Liu C, He W, Zhu N, Hu Y, Fang Z, Guo K. J. Org. Chem. 2022; 87: 8445
  • 16 Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
    • 17a Yan L, Zhao D, Lan J, Cheng Y, Guo Q, Li X, Wu N, You J. Org. Biomol. Chem. 2013; 11: 7966
    • 17b Chen Y.-H, Chen C.-H, Chang C.-M, Fan B.-A, Chen D.-G, Lee J.-H, Chiu T.-L, Chou P.-T, Leung M.-k. J. Mater. Chem. C 2020; 8: 3571
    • 17c Gao Z, Liu Y, Wang Z, Shen F, Liu H, Sun G, Yao L, Lv Y, Lu P, Ma Y. Chem. Eur. J. 2013; 19: 2602
    • 17d Ohsawa T, Sasabe H, Watanabe T, Nakao K, Komatsu R, Hayashi Y, Hayasaka Y, Kido J. Adv. Opt. Mater. 2019; 7: 1801282
    • 18a Chen C, Shang G, Zhou J, Yu Y, Li B, Peng J. Org. Lett. 2014; 16: 1872
    • 18b Zhao G, Chen C, Yue Y, Yu Y, Peng J. J. Org. Chem. 2015; 80: 2827
  • 19 Bera SK, Boruah PJ, Parida SS, Paul AK, Mal P. J. Org. Chem. 2021; 86: 9587
  • 20 Bera SK, Alam MT, Mal P. J. Org. Chem. 2019; 84: 12009
  • 21 Bal A, Maiti S, Mal P. Chem. Asian J. 2020; 15: 624
  • 22 Colomer I, Chamberlain AE. R, Haughey MB, Donohoe TJ. Nat. Rev. Chem. 2017; 1: 0088
  • 23 Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. ACS Catal. 2021; 11: 1640
    • 24a Bera SK, Mal P. J. Org. Chem. 2021; 86: 14144
    • 24b Bhanja R, Bera SK, Mal P. Chem. Commun. 2023; 59: 4455
    • 24c Wang H, Li Y, Tang Z, Wang S, Zhang H, Cong H, Lei A. ACS Catal. 2018; 8: 10599
    • 25a Wu L, Hao Y, Liu Y, Wang Q. Org. Biomol. Chem. 2019; 17: 6762
    • 25b Ma Y.-N, Cheng M.-X, Yang S.-D. Org. Lett. 2017; 19: 600