Subscribe to RSS
DOI: 10.1055/a-2063-1330
An Improved Synthesis of Chiral 2,2′-Bipyridine Ligand C3-ACBP Without Column Chromatography
Abstract
A method for purifying compounds bearing pyridine structure from Mitsunobu reaction mixtures using zinc chloride and releasing bipyridines from Ullmann coupling reaction mixtures by using sulfide anion for competitively coordinating the copper ion were developed for the facile synthesis of the chiral 2,2′-bipyridine ligand (Ra ,S,S)-C3-ACBP. With these improvements, an improved synthesis of the chiral ligand at a 7 gram scale has been fulfilled in 48% overall yield without column chromatography within 3–4 days.
Key words
2,2′-bipyridine ligand - C3-ACBP - column chromatography free - zinc chloride - gram scaleSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2063-1330.
- Supporting Information
Publication History
Received: 25 February 2023
Accepted after revision: 27 March 2023
Accepted Manuscript online:
27 March 2023
Article published online:
24 April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Fache F, Schulz E, Tommasino ML, Lemaire M. Chem. Rev. 2000; 100: 2159
- 1b Liu H, Du D.-M. Adv. Synth. Catal. 2009; 351: 489
- 1c Desimoni G, Faita G, Jørgensen KA. Chem. Rev. 2011; 111: PR284
- 1d Zhang W, Yang G. Chem. Soc. Rev. 2018; 47: 1783
- 1e Connon R, Roche B, Rokade BV, Guiry PJ. Chem. Rev. 2021; 121: 6373
- 1f Li J, Yu B, Lu Z. Chin. J. Chem. 2021; 39: 488
- 2a Fletcher NC. J. Chem. Soc., Perkin Trans. 1 2002; 1831
- 2b Kwong H.-L, Yeung H.-L, Yeung C.-T, Lee W.-S, Lee C.-S, Wong W.-L. Coord. Chem. Rev. 2007; 251: 2188
- 3a Ouyang Y, Zhan M, Zhou J, Jiao J, Hu H, Yamada YA, Li P. Chin. J. Chem. 2019; 37: 807
- 3b Zhang S, Perveen S, Ouyang Y, Xu L, Yu T, Zhao M, Wang L, Song P, Li P. Angew. Chem. Int. Ed. 2022; 61: e202117843
- 3c Perveen S, Zhang S, Wang L, Song P, Ouyang Y, Jiao J, Duan X.-H, Li P. Angew. Chem. Int. Ed. 2022; 61: e2022121
- 3d Wang L, Li T, Perveen S, Zhang S, Wang X, Ouyang Y, Li P. Angew. Chem. Int. Ed. 2022; 61: e202213943
- 4a Bolm C, Zehnder M, Bur D. Angew. Chem., Int. Ed. Engl. 1990; 29: 205
- 4b Kitanosono T, Hisada T, Yamashita Y, Kobayashi S. Angew. Chem. Int. 2021; 60: 3407
- 4c Riehl PS, Richardson AD, Sakamoto T, Reid JP, Schindler CS. Chem. Sci. 2021; 12: 14133
- 4d Kitanosono T, Hisada T, Yamashita Y, Kobayashi S. J. Organomet. Chem. 2022; 956–966: 122318
- 5 Ito K, Katsuki T. Synlett 1993; 638
- 6 Lötscher D, Rupprecht S, Stoeckli-Evans H, von Zelewsky A. Tetrahedron: Asymmetry 2000; 11: 4341
- 7a Malkov AV, Bella M, Langer V, Kočovský P. Org. Lett. 2000; 2: 3047
- 7b Malkov AV, Pernazza D, Bell M, Bella M, Massa A, Teplý F, Meghani P, Kočovský P. J. Org. Chem. 2003; 68: 472
- 8a Rios R, Liang J, Lo MM.-C, Fu GC. Chem. Commun. 2000; 377
- 8b Fu GC. Acc. Chem. Res. 2006; 39: 853
- 9 Milani B, Alessio E, Mestroni G, Zangrando E, Randaccio L, Consiglio G. J. Chem. Soc., Dalton Trans. 1996; 1021
- 10a Gao X, Wu B, Huang W.-J, Chen M.-W, Zhou Y.-G. Angew. Chem. Int. Ed. 2015; 54: 11956
- 10b Gao X, Wu B, Yan Z, Zhou Y.-G. Org. Biomol. Chem. 2016; 14: 8237
- 10c Shen H.-Q, Liu C, Zhou J, Zhou Y.-G. Org. Chem. Front. 2018; 5: 611
- 10d Li W, Zhang H, Chen K, Jiang H, Sun J, Zhu S. Chem. Sci. 2022; 13: 12396
- 11 Gao X, Wu B, Yan Z, Zhou Y.-G. Org. Biomol. Chem. 2016; 14: 55
- 12 Zhou Q.-Q, Lu F.-D, Lu L.-Q, Xiao W.-J. Org. Chem. Front. 2018; 5: 3098
- 13 Lombardi L, Cerveri A, Ceccon L, Pedrazzani R, Monari M, Bertuzzi G, Bandini M. Chem. Commun. 2022; 58: 4071
- 14 Zhao Z.-B, Shi L, Meng F.-J, Li Y, Zhou Y.-G. Org. Chem. Front. 2019; 6: 1572
- 15 Chen J, Han X, Lu X. Org. Biomol. Chem. 2020; 18: 8850
- 16 Deng Z, Ouyang Y, Ao Y, Cai Q. Acta Chim. Sinica 2021; 79: 649
- 17 Batesky DC, Goldfogel MJ, Weix DJ. J. Org. Chem. 2017; 82: 9931