Subscribe to RSS
DOI: 10.1055/a-2072-3025
Palladium-Catalyzed Asymmetric Cycloaddition/Cope Rearrangement Relay: Synthesis of Chiral Endocyclic Allenes
This work was supported by National Natural Science Foundation of China (No. 22271113, 92256301, 21820102003 and 91956201), the Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, and the Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education).
Abstract
The synthesis of chiral endocyclic allenes, especially the medium-sized ones, remains a challenge in allene chemistry due to unfavorable tension and difficult stereocontrol. Herein, an efficient protocol for the construction of chiral nine-membered endocyclic allenes via palladium-catalyzed asymmetric cycloaddition/Cope rearrangement relay of vinyl carbonates with activated enynes is highlighted. This process provides rapid access to a variety of chiral nine-membered endocyclic allenes in good yields with excellent enantioselectivities. In particular, a chiral P,S-ligand shows good performance on stereoinduction, generating central and axial chirality in a single transformation, which is rationalized by DFT calculations and by a proposed transition state.
1 Introduction
2 Pd-Catalyzed Asymmetric Cycloaddition/Cope Rearrangement Relay
3 Plausible Mechanism and Stereochemical Outcome
4 Conclusion and Outlook
Key words
chiral allene - medium-sized ring - cycloaddition - Cope rearrangement - asymmetric catalysisPublication History
Received: 04 April 2023
Accepted: 12 April 2023
Accepted Manuscript online:
12 April 2023
Article published online:
22 May 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 van t Hoff JH. La Chemie dans l’espace . Bazendijk; Rotterdam: 1875: 29
- 2 Alcaide B, Almendros P. Chem. Soc. Rev. 2014; 43: 2886
- 3a Krause N, Hashmi AS. K. Modern Allene Chemistry . Wiley-VCH; Weinheim: 2004
- 3b Liu L, Ward RM, Schomaker JM. Chem. Rev. 2019; 119: 12422
- 3c Alonso JM, Almendros P. Chem. Rev. 2021; 121: 4193
- 4 Hoffmann-Röder A, Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196
- 5 Rivera-Fuentes P, Diederich F. Angew. Chem. Int. Ed. 2012; 51: 2818
- 6a Wang H.-N, Luo H.-W, Zhang Z.-M, Zheng W.-F, Yin Y, Qian H, Zhang J.-L, Ma S.-M. J. Am. Chem. Soc. 2020; 142: 9763
- 6b Law C.-Y, Kativhu E, Wang J, Morken JP. Angew. Chem. Int. Ed. 2020; 59: 10311
- 6c Zeng Y.-H, Chiou M.-F, Zhu X.-T, Cao J, Lv D.-Q, Jian W.-J, Li Y.-J, Zhang X.-H, Bao H.-L. J. Am. Chem. Soc. 2020; 142: 18014
- 6d Dong X.-Y, Zhan T.-Y, Jiang S.-P, Liu X.-D, Ye L, Li Z.-L, Gu Q.-S, Liu X.-Y. Angew. Chem. Int. Ed. 2021; 60: 2160
- 6e Yang L.-L, Ouyang J, Zou H.-N, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2021; 143: 6401
- 6f Zhang J.-C, Huo X.-H, Xiao J.-Z, Zhao L, Ma S.-M, Zhang W.-B. J. Am. Chem. Soc. 2021; 143: 12622
- 7a Chu W.-D, Zhang L, Zhang Z.-K, Zhou Q, Mo F.-Y, Zhang Y, Wang J.-B. J. Am. Chem. Soc. 2016; 138: 14558
- 7b Trost BM, Zell D, Hohn C, Mata G, Maruniak A. Angew. Chem. Int. Ed. 2018; 57: 12916
- 7c He C.-Y, Tan Y.-X, Wang X, Ding R, Wang Y.-F, Wang F, Gao D.-D, Tian P, Lin G.-Q. Nat. Commun. 2020; 11: 4293
- 8 Johnson RP. Chem. Rev. 1989; 89: 1111
- 9 Daoust KJ, Hernandez SM, Konrad KM, Mackie ID, Winstanley JJr, Johnson RP. J. Org. Chem. 2006; 71: 5708
- 10a Marquis ET, Gardner PD. Tetrahedron Lett. 1966; 2793
- 10b Price JD, Johnson RP. Tetrahedron Lett. 1986; 27: 4679
- 11a Barber JS, Styduhar ED, Pham HV, McMahon TC, Houk KN, Garg NK. J. Am. Chem. Soc. 2016; 138: 2512
- 11b Barber JS, Yamano MM, Ramirez M, Darzi ER, Knapp RR, Liu F, Houk KN, Garg NK. Nat. Chem. 2018; 10: 953
- 11c Yamano MM, Knapp RR, Ngamnithiporn A, Ramirez M, Houk KN, Stoltz BM, Garg NK. Angew. Chem. Int. Ed. 2019; 58: 5653
- 11d Kelleghan AV, Witkowski DC, McVeigh MS, Garg NK. J. Am. Chem. Soc. 2021; 143: 9338
- 12a Skattebøl L. Tetrahedron Lett. 1961; 167
- 12b Moore WR, Ward HR. J. Org. Chem. 1962; 27: 4179
- 12c Untch KG, Martin DJ, Castellucci NT. J. Org. Chem. 1965; 30: 3572
- 12d Ball WJ, Landor SR. J. Chem. Soc. 1962; 2298
- 12e Moore WR, Bertelson RC. J. Org. Chem. 1962; 27: 4182
- 13 Janßen CE, Krause N. Eur. J. Org. Chem. 2005; 2322
- 14a Brody MS, Williams RM, Finn MG. J. Am. Chem. Soc. 1997; 119: 3429
- 14b Kulyk S, Dougherty WG. Jr, Kassel WS, Fleming SA, Sieburth SM. Org. Lett. 2010; 12: 3296
- 14c Mömming CM, Kehr G, Wibbeling B, Fröhlich R, Schirmer B, Grimme S, Erker G. Angew. Chem. Int. Ed. 2010; 49: 2414
- 15a Sashida H, Tsuchiya T. Chem. Pharm. Bull. 1984; 32: 4600
- 15b Sashida H, Tsuchiya T. Chem. Pharm. Bull. 1986; 34: 3644
- 15c Perscheid M, Schollmeyer D, Nubbemeyer U. Eur. J. Org. Chem. 2011; 5250
- 15d Voskressensky LG, Titov AA, Dzhankaziev MS, Borisova TN, Kobzev MS, Dorovatovskii PV, Khrustalev VN, Aksenov AV, Varlamov AV. New J. Chem. 2017; 41: 1902
- 16 Zelder C, Krause N. Eur. J. Org. Chem. 2004; 3968
- 17a Ogasawara M, Okada A, Nakajima K, Takahashi T. Org. Lett. 2009; 11: 177
- 17b Ichio H, Murakami H, Chen Y, Takahashi T, Ogasawara M. J. Org. Chem. 2017; 82: 7503
- 18 Sweeney ZK, Salsman JL, Andersen RA, Berman RG. Angew. Chem. Int. Ed. 2000; 39: 2339
- 19 Zhang M.-M, Qu B.-L, Shi B, Xiao W.-J, Lu L.-Q. Chem. Soc. Rev. 2022; 51: 4146
- 20a Yang L.-C, Wang Y.-N, Liu R.-Y, Luo Y.-X, Ng X.-Q, Yang B.-M, Rong Z.-Q, Lan Y, Shao Z.-H, Zhao Y. Nat. Chem. 2020; 12: 860
- 20b Trost BM, Zuo Z.-J. Angew. Chem. Int. Ed. 2020; 59: 1243
- 20c Liu Y.-Z, Wang Z.-A, Huang Z.-S, Zheng X, Yang W.-L, Deng WP. Angew. Chem. Int. Ed. 2020; 59: 1238
- 21a Wei Y, Lu L.-Q, Li T.-R, Feng B, Wang Q, Xiao W.-J, Alper H. Angew. Chem. Int. Ed. 2016; 55: 2200
- 21b Li M.-M, Wei Y, Liu J, Chen H.-W, Lu L.-Q, Xiao W.-J. J. Am. Chem. Soc. 2017; 139: 14707
- 21c Zhang Q.-L, Xiong Q, Li M.-M, Xiong W, Shi B, Lan Y, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2020; 59: 14096
- 21d Li M.-M, Qu B.-L, Xiao Y.-Q, Xiao W.-J, Lu L.-Q. Sci. Bull. 2021; 66: 1719
- 21e Zhang M.-M, Chen P, Xiong W, Hui X.-S, Lu L.-Q, Xiao W.-J. CCS Chem. 2021; 4: 2620
- 21f Wang B.-C, Wei Y, Xiong F.-Y, Qu B.-L, Xiao W.-J, Lu L.-Q. Sci. China Chem. 2022; 65: 2347
- 22a Mukai C, Ohta M, Yamashita H, Kitagaki S. J. Org. Chem. 2004; 69: 6867
- 22b Majhi TP, Neogi A, Ghosh S, Mukherjee AK, Helliwell M, Chattopadhyay P. Synthesis 2008; 94
- 22c Chinthapally K, Massaro NP, Sharma I. Org. Lett. 2016; 18: 6340
- 23a Ohnuma T, Hata N, Miyachi N, Wakamatsu T, Ban Y. Tetrahedron Lett. 1986; 27: 219
- 23b Gao X, Xia M.-R, Yuan C.-H, Zhou L.-J, Sun W, Li C, Wu B, Zhu D.-Y, Zhang C, Zheng B, Wang D.-Q, Guo H.-C. ACS Catal. 2019; 9: 1645
- 23c Wang Y, Cai P.-J, Yu Z.-X. J. Am. Chem. Soc. 2020; 142: 2777
- 24 CCDC 2122960 contains the supplementary crystallographic data for compound 4da. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
For recent selected works, see:
For recent examples:
For recent examples:
For selected works, see:
For selected works, see:
For selected works, see:
For recent selected examples, see:
For examples of nine-membered rings, see: