Subscribe to RSS
DOI: 10.1055/a-2076-9792
Biocatalytic Synthesis of Chiral Benzylic Alcohols via Enantioselective Hydroxylation by a Self-Sufficient Cytochrome P450 from Deinococcus gobiensis
We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21961048 and 32271537), the Guizhou Education Department Youth Science and Technology Talents Growth Project (QKHKY-2017-195), and the Science and Technology Department of Zunyi (ZSKH-2018-3, ZSKRPT-2020-5, and ZSKRPT-2021-5).
Abstract
Enzymatic asymmetric benzylic hydroxylation represents a green synthesis of valuable chiral benzylic alcohols. The stereoselective C–H direct hydroxylation profile possessed by cytochrome P450 monooxygenases (P450s) makes it more attractive. Here, we successfully expressed a self-sufficient cytochrome P450 monooxygenase from Deinococcus gobiensis in Escherichia coli BL21(DE3) host. The recombinant E. coli (P450DG) strain performed well in terms of functionality and has stereoselective benzylic hydroxylation ability for propylbenzene substrates. Asymmetric benzylic hydroxylation of various aromatic compounds was further investigated using the recombinant E. coli (P450DG) strain based on the optimal conditions, producing the corresponding enantioenriched pharmaceutically relevant benzylic alcohols in moderate yields with good to excellent enantioselectivity.
Key words
biocatalysis - cytochrome P450 - enantioselective hydroxylation - whole-cell bioconversion - chiral benzylic alcoholsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2076-9792.
- Supporting Information
Publication History
Received: 24 February 2023
Accepted after revision: 19 April 2023
Accepted Manuscript online:
19 April 2023
Article published online:
23 May 2023
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Watile RA, Bunrit A, Margalef J, Akkarasamiyo S, Ayub R, Lagerspets E, Biswas S, Repo T, Samec JS. M. Nat. Commun. 2019; 10: 3826
- 1b Cui H.-B, Xie L.-Z, Wan N.-W, He Q, Li Z, Chen Y.-Z. Green Chem. 2019; 21: 4324
- 1c Huang L, Zhu J, Jiao G, Wang Z, Yu X, Deng WP, Tang W. Angew. Chem. Int. Ed. 2016; 55: 4527
- 2a Ebner DC, Bagdanoff JT, Ferreira EM, McFadden RM, Caspi DD, Trend RM, Stoltz BM. Chem. Eur. J. 2009; 15: 12978
- 2b Huisman GW, Liang J, Krebber A. Curr. Opin. Chem. Biol. 2010; 14: 122
- 2c Qu S, Smith SM, Laina-Martin V, Neyyappadath RM, Greenhalgh MD, Smith AD. Angew. Chem. Int. Ed. 2020; 59: 16572
- 2d Kim JY, Lee YS, Choi Y, Ryu DH. ACS Catal. 2020; 10: 10585
- 3a Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
- 3b Münch J, Püllmann P, Zhang W, Weissenborn MJ. ACS Catal. 2021; 11: 9168
- 3c Schmermund L, Reischauer S, Bierbaumer S, Winkler CK, Diaz-Rodriguez A, Edwards LJ, Kara S, Mielke T, Cartwright J, Grogan G, Pieber B, Kroutil W. Angew. Chem. Int. Ed. 2021; 60: 6965
- 4a Abazid AH, Clamor N, Nachtsheim BJ. ACS Catal. 2020; 10: 8042
- 4b Tanwar L, Borgel J, Ritter T. J. Am. Chem. Soc. 2019; 141: 17983
- 4c Masferrer-Rius E, Li FS, Lutz M, Gebbink RJ. M. K. Catal. Sci. Technol. 2021; 11: 7751
- 5a Urlacher VB, Girhard M. Trends Biotechnol. 2019; 37: 882
- 5b Ortiz de Montellano PR. Chem. Rev. 2010; 110: 932
- 6a Di Nardo G, Gilardi G. Trends Biochem. Sci. 2020; 45: 511
- 6b McIntosh JA, Farwell CC, Arnold FH. Curr. Opin. Chem. Biol. 2014; 19: 126
- 7a Werck-Reichhart D, Feyereisen R. Genome Biol. 2000; 1 reviews 3003.1
- 7b Wei Y, Ang EL, Zhao H. Curr. Opin. Chem. Biol. 2018; 43: 1
- 8a Zhang X, Li S. Nat. Prod. Rep. 2017; 34: 1061
- 8b Dong J, Fernandez-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Angew. Chem. Int. Ed. 2018; 57: 9238
- 9 Hannemann F, Bichet A, Ewen KM, Bernhardt R. Biochim. Biophys. Acta 2007; 1770: 330
- 10 Choi KY, Jung E, Jung DH, Pandey BP, Yun H, Park HY, Kazlauskas RJ, Kim BG. FEBS J. 2012; 279: 1650
- 11 Munro AW, Leys DG, McLean KJ, Marshall KR, Ost TW, Daff S, Miles CS, Chapman SK, Lysek DA, Moser CC, Page CC, Dutton PL. Trends Biochem. Sci. 2002; 27: 250
- 12 Xie L, Chen K, Cui H, Wan N, Cui B, Han W, Chen Y. ChemBioChem 2020; 21: 1820
- 13 Nelson DR. Hum. Genomics 2009; 4: 59
- 14 Guengerich FP, Martin MV, Sohl CD, Cheng Q. Nat. Protoc. 2009; 4: 1245
- 15 Whitehouse CJ. C, Bell SG, Wong L.-L. Chem. Soc. Rev. 2012; 41: 1218
- 16 Neufeld K, Marienhagen J, Schwaneberg U, Pietruszka J. Green Chem. 2013; 15: 2408
- 17 Wu K, Tang L, Cui H, Wan N, Liu Z, Wang Z, Zhang S, Cui B, Han W, Chen Y. ChemCatChem 2018; 10: 5410
- 18 Deng G.-Z, Zhou X, Yu Q.-X, Mou X.-Q, An M, Cui H.-B, Zhou X.-J, Wan N.-W, Li Z, Chen Y.-Z. Org. Process Res. Dev. 2022; 26: 2046
- 19 Wan N.-W, Cui H.-B, Zhao L, Shan J, Chen K, Wang Z.-Q, Zhou X.-J, Cui B.-D, Han W.-Y, Chen Y.-Z. Catal. Sci. Technol. 2022; 12: 5703
- 20a Zhou J.-N, Fang Q, Hu Y.-H, Yang L.-Y, Wu F.-F, Xie L.-J, Wu J, Li S. Org. Biomol. Chem. 2014; 12: 1009
- 20b Cashman JR, Ghirmai S. Bioorg. Med. Chem. 2009; 17: 6890
- 21 Chen Y, Lie F, Li Z. Adv. Synth. Catal. 2009; 351: 2107
- 22 Su X.-L, Ye L, Chen J.-J, Liu X.-D, Jiang S.-P, Wang F.-L, Liu L, Yang C.-J, Chang X.-Y, Li Z.-L, Gu Q.-S, Liu X.-Y. Angew. Chem. Int. Ed. 2021; 60: 380
- 23 Shi Z, Tong Q, Leong WW. Y, Zhong G. Chem. Eur. J. 2012; 18: 9802
- 24 Nishikawa K, Fukuda H, Abe M, Nakanishi K, Tazawa Y, Yamaguchi C, Hiradate S, Fujii Y, Okuda K, Shindo M. Phytochemistry 2013; 96: 223
- 25 An W.-K, Han M.-Y, Wang C.-A, Yu S.-M, Zhang Y, Bai S, Wang W. Chem. Eur. J. 2014; 20: 11019
- 26 Garg N, Paira S, Sundararaju B. ChemCatChem 2020; 12: 3472
- 27 Zhang P, Yu J, Peng F, Wu X, Jie J, Liu C, Tian H, Yang H, Fu H. Chem. Eur. J. 2016; 22: 17477
- 28 Li F, Long L, He Y.-M, Li Z, Chen H, Fan Q.-H. Angew. Chem. Int. Ed. 2022; 61: e202202972