Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(15): 1781-1786
DOI: 10.1055/a-2077-4955
DOI: 10.1055/a-2077-4955
letter
Synthesis of Highly Substituted 3-Acylpyrroles by a Four-Component Sonogashira Alkynylation–Amine Addition–Nitroalkene Michael Addition–Cyclocondensation
The authors gratefully acknowledge financial support by Erasmus (scholarship for P.L.) and by the Fonds der Chemischen Industrie.
Abstract
A consecutive four-component alkynylation–amine addition–nitroalkene addition–cyclocondensation one-pot reaction of acid chlorides, alkynes, amines, and nitroalkenes furnished a library of 3-acylpyrroles in modest to good yields. The sequence takes advantage of a synergism between a Brønsted acid (acetic acid) and a Lewis acid [iron(III) chloride] in the terminal addition-cyclocondensation step of the intermediately formed enaminones with nitroalkenes.
Key words
alkynylation - copper catalysis - cyclocondensation - multicomponent reaction - cascade reaction - pyrrolesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2077-4955.
- Supporting Information
Publication History
Received: 28 February 2023
Accepted after revision: 19 April 2023
Accepted Manuscript online:
19 April 2023
Article published online:
07 June 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
- 2 Prieto L, Neuburger M, Spingler B, Zelder F. Org. Lett. 2016; 18: 5292
- 3 Poulos TL. Chem. Rev. 2014; 114: 3919
- 4 Walsh CT, Garneau-Tsodikova S, Howard-Jones AR. Nat. Prod. Rep. 2006; 23: 517
- 5 Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, McArthur G, Judson IR, Heinrich MC, Morgan JA, Desai J, Fletcher CD, George S, Bello CL, Huang X, Baum CM, Casali PG. Lancet 2006; 368: 1329
- 6 Mallinson TE. J. Paramed. Prac. 2017; 9: 522
- 7 McCrindle BW, Ose L, Marais AD. J. Pediatr. 2003; 143: 74
- 8 Müller D, Rambo CR, Recouvreux DO. S, Porto LM, Barra G. Synth. Met. 2011; 161: 106
- 9 Chen J.-J, Xu Y.-C, Gan Z.-L, Peng X, Yi X.-Y. Eur. J. Inorg. Chem. 2019; 1733
- 10 Sobenina LN, Vasil’tsov AM, Petrova OV, Petrushenko KB, Ushakov IA, Clavier G, Meallet-Renault R, Mikhaleva AI, Trofimov BA. Org. Lett. 2011; 13: 2524
- 11 Hunt DA, Treacy MF. In Insecticides with Novel Modes of Action: Mechanisms and Application . Ishaaya I, Degheele D. Springer; Berlin: 1998
- 13 Hantzsch A. Ber. Dtsch. Chem. Ges. 1890; 23: 1474
- 14 Martínez J, Cortés JF, Miranda R. Processes 2022; 10: 1274
- 15a Rostami H, Shiri L. ChemistrySelect 2020; 5: 11197
- 15b Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
- 15c Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
- 16a D’Souza DM, Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
- 16b Vlaar T, Ruijter E, Maes BU. W, Orru RV. A. Angew. Chem. Int. Ed. 2013; 52: 7084
- 16c Balme G, Bossharth E, Monteiro N. Eur. J. Org. Chem. 2003; 4101
- 16d Orru RV, de Greef M. Synthesis 2003; 1471
- 17a Braun RU, Zeitler K, Müller TJ. J. Org. Lett. 2001; 3: 3297
- 17b Nordmann J, Müller TJ. J. Org. Biomol. Chem. 2013; 11: 6556
- 17c Braun RU, Müller TJ. J. Synthesis 2004; 2391
- 17d Merkul E, Boersch C, Frank W, Müller TJ. J. Org. Lett. 2009; 11: 2269
- 18 Amaye IJ, Haywood RD, Mandzo EM, Wirick JJ, Jackson-Ayotunde PL. Tetrahedron 2021; 83: 131984
- 19 Halimehjani AZ, Namboothiri IN. N, Hooshmand SE. RSC Adv. 2014; 4: 31261
- 20 Louroubi A, Nayad A, Hasnaoui A, Idouhli R, Abouelfida A, El Firdoussi L, Ait MA. J. Chem. 2021; 6613243
- 21 Xu H, Li Y, Xing M, Jia J, Han L, Ye Q, Gao J. Chem. Lett. 2015; 44: 574
- 22 Abdukader A, Xue Q, Lin A, Zhang M, Cheng Y, Zhu C. Tetrahedron Lett. 2013; 54: 5898
- 23 Ghabraie E, Balalaie S, Bararjanian M, Bijanzadeh HR, Rominger F. Tetrahedron 2011; 67: 5415
- 24 Xiao X, Chen X.-H, Wang X.-X, Li W.-Z, Cui H.-L. Synthesis 2022; 54: 2019
- 25 Karpov AS, Müller TJ. J. Synthesis 2003; 2815
- 26 Ponduri R, Kumar P, Vadali LR. Synth. Commun. 2018; 48: 3113
- 27 Nordmann J, Müller TJ. J. Synthesis 2014; 46: 522
- 28 Pyrroles 3; General Procedure PdCl2(PPh3)2 (42 mg, 0.06 mmol, 2 mol%) and CuI (23 mg, 0.12 mmol, 4 mol%) were dissolved in 1,4-dioxane (1.2 mL, 0.4 mL/mmol) under N2 in an oven-dried Schlenk tube equipped with a magnetic stirrer bar. Et3N (304 mg, 0.42 mL, 3.0 mmol) and the appropriate alkyne 5 (1.0 equiv) and acid chloride 4 (1.0 equiv) were added, and the resulting mixture was stirred for 2 h (for experimental details, see Supplementary Information, Table S1). MeOH (0.1 mL) and the appropriate amine 6 (1.0 equiv) were then added, and the mixture was stirred at 70 °C for 24 h. After complete conversion (TLC), the appropriate nitroalkene (1.1 equiv), FeCl3 (24 mg, 0.15 mmol, 5 mol%), and AcOH (0.34 mL, 6.0 mmol, 2.0 equiv) were added, and the reaction temperature was increased to 130 °C. After 24 h (TLC), the mixture was diluted with EtOAc (20 mL) and transferred into a separating funnel. H2O (25 mL) was added, and the aqueous layer was extracted with EtOAc (3 × 25 mL). The combined organic phases were dried (Na2SO4) and filtered, and the product was adsorbed on Celite and purified by flash chromatography (silica gel, hexane–EtOAc).
- 29 (1-Benzyl-2,4-diphenyl-1H-pyrrol-3-yl)(2-fluorophenyl)methanone (3a) Prepared by the general procedure and purified by flash chromatography [silica gel, hexane–EtOAc (10:1)] as a clear colorless oil; yield: 232 mg (0.54 mmol, 54%); Rf = 0.31 (hexane–acetone, 5:1). IR (neat): 3061 (w), 3030 (w), 2926 (w), 1634 (m), 1607 (w), 1576 (w), 1520 (w), 1479 (m), 1450 (m), 1406 (m), 1354 (w), 1296 (w), 1267 (w), 1221 (w), 1206 (w), 1188 (w), 1155 (w), 1146 (w), 1101 (w), 1074 (w), 1043 (w), 1022 (w), 997 (w), 901 (m), 833 (w), 810 (w), 752 (s), 733 (m), 696 (s), 667 (w), 648 (m), 615 (w) cm–1. 1H NMR (300 MHz, CD2Cl2): δ = 5.00 (s, 2 H), 6.67 (t, J = 9.8 Hz, 1 H), 6.87 (dt, J = 0.7 Hz, J = 7.4 Hz, 2 H), 7.03 (m, 2H), 7.08–7.39 (m, 15 H). 13C NMR (75 MHz, CD2Cl2): δ = 51.07 (CH2), 115.84 (d, J = 22.4 Hz, CH), 121.43 (CH), 122.62 (Cquat), 123.74 (d, J = 3.6 Hz, CH), 126.49 (2 × CH), 126.96 (Cquat), 127.27 (2 × CH), 128.06 (CH), 128.25 (3 × CH), 128.68 (CH), 129.02 (CH), 129.10 (Cquat), 129.95 (d, J = 13.1 Hz, CH), 131.11 (CH), 131.13 (CH), 131.31 (CH), 131.26 (2 × CH), 132.70 (d, J = 8.5 Hz, CH), 135.24 (Cquat), 137.78 (Cquat), 139.70 (Cquat), 141.85 (d, J = 6.3 Hz, Cquat), 160.34 (d, J = 251.6 Hz, Cquat), 189.51 (Cquat). 19F NMR (300 MHz, CD2Cl2): δ = –114.1. HRMS-ESI; m/z [M + H]+ calcd for C31H22FNO: 432.1758; found: 432.1757. Anal. Calcd for C30H22FNO (431.51): C, 83.50; H, 5.14; N, 3.25. Found: C, 83.44; H, 5.12; N, 3.40. [1-Benzyl-2-isopropyl-4-(4-nitrophenyl)-1H-pyrrol-3-yl](3-fluorophenyl)methanone (3g) Prepared by the general procedure and isolated as a red powder; yield: 605 mg (1.37 mmol, 38%); mp 173.5–174.5 °C; Rf = 0.31 (hexane–acetone, 5:1). IR (neat): 3121 (w), 3073 (w), 3061 (w), 3032 (w), 2985 (w), 2930 (w), 2866 (w), 2828 (w), 2598 (w), 2425 (w), 2386 (w), 1983 (w), 1703 (w), 1651 (m), 1634 (w), 1585 (s), 1504 (s), 1479 (m), 1468 (w), 1435 (m), 1402 (w), 1383 (w), 1335 (s), 1325 (s), 1294 (s), 1271 (s), 1229 (m), 1186 (m), 1169 (m), 1159 (m), 1134 (m), 1107 (s), 1086 (m), 1076 (m), 1020 (w), 989 (w), 945 (m), 926 (w), 903 (w), 891 (w), 864 (m), 847 (s), 816 (m), 791 (s), 773 (m), 762 (m), 748 (s), 736 (s), 729 (s), 711 (m), 692 (s), 658 (m) cm–1. 1H NMR (300 MHz, CD2Cl2): δ = 1.20 (d, J = 7.2 Hz, 6 H), 3.18 (h, J = 7.1 Hz, 1 H), 5.23 (s, 2 H), 6.86 (s, 1 H), 7.04 (tdd, J = 0.9, 2.6, 8.3 Hz, 1 H), 7.10–7.24 (m, 5 H), 7.29–7.45 (m, 4 H), 7.50 (dt, J = 1.2 Hz, J = 7.7 Hz, 1 H), 7.92 (m, 2 H). 13C NMR (75 MHz, CD2Cl2): δ = 21.98 (2 × CH3), 26.70 (CH), 51.64 (CH2), 116.44 (d, J = 22.4 Hz, CH), 119.41 (d, J = 22.2 Hz, CH), 119.85 (CH), 121.18 (CH), 123.52 (Cquat), 123.77 (CH), 126.00 (d, J = 2.9 Hz, CH), 126.92 (2 × CH), 128.28 (2 × CH), 128.30 (CH), 129.36 (2 × CH), 130.16 (d, J = 7.7 Hz, CH), 137.57 (Cquat), 142.00 (d, J = 6.2 Hz, Cquat), 142.52 (Cquat), 143.69 (Cquat), 145.86 (Cquat), 162.82 (d, J = 246.5 Hz, Cquat), 194.13 (d, J = 2.3 Hz, Cquat). 19F NMR (300 MHz, CD2Cl2): δ = –113.6. HRMS-ESI: m/z [M + H]+ calcd for C27H24FN2O3: 443.1765; found: 443.1768. Anal. Calcd for C27H23FN2O3 (442.49): C, 73.29; H, 5.24; N, 6.33. Found: C, 72.95; H, 5.33; N, 6.12. (1-Benzyl-5-methyl-2,4-diphenyl-1H-pyrrol-3-yl)(3-fluorophenyl)methanone (3n) Prepared by the general procedure and isolated as a white powder; yield: 431 mg (0.97 mmol, 33%); mp 143–144 °C; Rf = 0.33 (hexane–acetone, 5:1). IR (neat): 3067 (w), 3028 (w), 2955 (w), 2940 (w), 2913 (w), 1703 (w), 1643 (m), 1599 (w), 1584 (w), 1557 (w), 1520 (w), 1491 (w), 1474 (w), 1443 (m), 1421 (w), 1404 (w), 1375 (w), 1348 (w), 1333 (w), 1315 (w), 1288 (w), 1271 (w), 1242 (w), 1223 (w), 1209 (w), 1198 (w), 1177 (w), 1134 (w), 1109 (w), 1072 (w), 1045 (w), 1028 (w), 1014 (w), 995 (w), 964 (w), 941 (w), 924 (w), 910 (w), 885 (w), 870 (w), 854 (m), 831 (w), 802 (w), 762 (m), 735 (m), 696 (s), 677 (w), 648 (w), 637 (w) cm–1. 1H NMR (300 MHz, CD2Cl2): δ = 2.18 (s, 3 H), 5.13 (s, 2 H), 6.90 (tdd, J = 1.00 Hz, J = 2.72 Hz, 8.46 Hz, 1 H), 6.97 (m, 2 H), 7.01–7.40 (m, 16 H). 13C NMR (75 MHz, CD2Cl2): δ = 10.97 (CH3), 48.33 (CH2), 116.45 (d, J = 22.2 Hz, CH), 118.50 (d, J = 21.8 Hz, CH), 121.81 (Cquat), 123.77 (Cquat), 125.78 (d, J = 2.7 Hz, CH), 126.10 (2 × CH), 126.22 (CH), 127.68 (CH), 127.91 (Cquat), 128.24 (2 × CH), 128.40 (2 × CH), 128.44 (CH), 129.21 (2 × CH), 129.52 (d, J = 8.1 Hz, CH), 130.43 (2 × CH), 131.17 (2 × CH), 131.80 (Cquat), 135.84 (Cquat), 137.45 (Cquat), 138.22 (Cquat), 142.15 (d, J = 6.3 Hz, Cquat), 160.75–164.00 (d, J = 245.3 Hz, Cquat), 192.32 (d, J = 2.2 Hz, Cquat). 19F NMR (300 MHz, CD2Cl2): δ = –114.8. HRMS-ESI: m/z [M + H]+ calcd for C31H25FNO: 446.1915; found: 446.1918. Anal. Calcd for C31H24FNO (445.54): C, 83.57; H, 5.43; N, 3.14. Found: C, 83.35; H, 5.46; N, 3.09. (3-Fluorophenyl)[1-(4-methoxyphenyl)-2,4-diphenyl-1H-pyrrol-3-yl]methanone (3m) Prepared by the general procedure and isolated as a beige powder; yield: 663 mg (1.48 mmol, 50%); mp 155–156 °C; Rf = 0.30 (hexane–acetone, 5:1). IR (neat): 3129 (w), 3071 (w), 3024 (w), 2972 (w), 2901 (w), 2884 (w), 2301 (w), 1643 (m), 1601 (w), 1585 (m), 1547 (w), 1512 (m), 1474 (m), 1435 (w), 1418 (w), 1383 (w), 1337 (w), 1275 (m), 1240 (m), 1217 (m), 1180 (w), 1169 (w), 1159 (w), 1134 (w), 1109 (w), 1078 (m), 1045 (w), 1024 (m), 1003 (w), 947 (w), 912 (w), 893 (w), 831 (m), 814 (w), 795 (m), 777 (m), 756 (s), 733 (w), 723 (w), 700 (s), 675 (m), 657 (w), 623 (w) cm–1. 1H NMR (600 MHz, CD2Cl2): δ = 3.79 (s, 3 H), 6.85 (m, 2 H), 6.99 (tdd, J = 0.9, 2.7, 8.4 Hz, 1 H), 7.06–7.19 (m, 10 H), 7.24 (m, 2 H), 7.33 (m, 2 H), 7.41 (ddd, J = 1.49, 2.45, 9.68 Hz, 1 H), 7.51 (dt, J = 1.15, 7.74 Hz, 1 H). 13C NMR (151 MHz, CD2Cl2): δ = 55.84 (CH3), 114.52 (3 × CH), 116.57 (d, J = 22.1 Hz, CH), 119.22 (d, J = 22.2 Hz, CH), 121.84 (Cquat), 122.50 (CH), 126.05 (d, J = 3.1 Hz, CH), 126.56 (Cquat), 126.62 (2 × CH), 127.72 (3 × CH), 127.97 (2 × CH), 128.12 (3 × CH), 128.46 (3 × CH), 128.66 (3 × CH), 129.80 (d, J = 7.7 Hz, CH), 131.18 (3 × CH), 131.37 (Cquat), 132.63 (Cquat), 134.95 (Cquat), 136.86 (Cquat), 141.58 (d, J = 6.2 Hz, Cquat), 159.25 (Cquat), 162.64 (d, J = 246.5 Hz, Cquat), 193.10 (d, J = 2.1 Hz, Cquat). 19F NMR (600 MHz, CD2Cl2): δ = –112.4. HRMS-ESI: m/z [M + H]+ calcd for C30H23FNO2: 448.17073; found: 448.1714. Anal. Calcd for C30H22FNO2 (447.16): C, 80.52; H, 4.96; N, 3.13. Found: C, 80.39; H, 4.86; N, 3.08.
- 30 Srivastava A, Shukla G, Nagaraju A, Verma GK, Raghuvanshi K, Jones RC. F, Singh MS. Org. Biomol. Chem. 2014; 12: 5484
- 31 Meera G, Rohit KR, Saranya S, Anilkumar G. RSC Adv. 2020; 10: 36031
- 32 Ballini R, Petrini M. Adv. Synth. Catal. 2015; 357: 2371
For representative reviews on multicomponent syntheses of pyrroles, see:
For a representative review, see: