Ultraschall Med 2023; 44(04): e191-e198
DOI: 10.1055/a-2080-2937
Original Article

Effects of exercise and cold-water exposure on microvascular muscle perfusion

Effekte von körperlicher Belastung und Kaltwasserexposition auf die mikrovaskuläre Muskelperfusion
Moritz Huettel
1   Center for Musculoskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück GmbH, Osnabrück, Germany (Ringgold ID: RIN39894)
,
Sarah Schroeter
1   Center for Musculoskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück GmbH, Osnabrück, Germany (Ringgold ID: RIN39894)
,
Rafael Heiss
2   Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (Ringgold ID: RIN9171)
,
Christoph Lutter
3   Department of Orthopedics, University Medical Center Rostock, Rostock University Medical Center, Rostock, Germany (Ringgold ID: RIN39071)
,
Tobias Golditz
4   Department of Anesthesiology, Erlangen University Hospital Department of Anaesthesiology, Erlangen, Germany (Ringgold ID: RIN155941)
5   Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (Ringgold ID: RIN59991)
,
Matthias Wilhelm Hoppe
6   Movement and Training Science, Faculty of Sports Science, Leipzig University, Leipzig, Germany (Ringgold ID: RIN9180)
,
Raimund Forst
7   Department of Orthopaedics and Orthopaedic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (Ringgold ID: RIN9171)
,
Hossam Hafez
1   Center for Musculoskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück GmbH, Osnabrück, Germany (Ringgold ID: RIN39894)
,
Martin Engelhardt
1   Center for Musculoskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück GmbH, Osnabrück, Germany (Ringgold ID: RIN39894)
,
Casper Grim
1   Center for Musculoskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück GmbH, Osnabrück, Germany (Ringgold ID: RIN39894)
,
Thilo Hotfiel
1   Center for Musculoskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück GmbH, Osnabrück, Germany (Ringgold ID: RIN39894)
8   Department of Trauma and Orthopedic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (Ringgold ID: RIN9171)
› Author Affiliations
Supported by: GOTS Research Grant provided by the German-Austrian-Swiss Society for Orthopaedic Traumatologic Sports Medicine (GOTS); recipient: Dr. Thilo Hotfiel, MD (senior author)

Abstract

Purpose Microvascular blood flow (MBF) and its intramuscular regulation are of importance for physiological responsiveness and adaptation. The quantifiable in-vivo monitoring of MBF after cycling or systemic cold-water exposure may reveal new insights into capillary regulatory mechanisms. This study aimed to assess the role of exercise and cold therapy on MBF by using contrast-enhanced ultrasound (CEUS).

Methods Twenty healthy athletes were recruited and randomly assigned to an intervention (IG) or a control group (CG). MBF was quantified in superficial (rectus femoris, RF) and deep muscle layers (vastus intermedius, VI). Representative perfusion parameters (peak enhancement (PE) and wash-in area under the curve (WiAUC)) were measured after a standardized measurement protocol for both groups at resting conditions (t0) and after cycling (20 min., 70% Watt max, t1) for both groups, after cold-water immersion exposure for IG (15 min., 12°C) or after precisely 15 minutes of rest for CG (t2) and for both groups after 60 minutes of follow-up (t3).

Results At t1, MBF in VI increased significantly compared to resting conditions in both groups in VI (p= 0.02). After the cold-water exposure (t2), there were no statistically significant changes in perfusion parameters as well as after 60 minutes of follow-up (t3) (p = 0.14).

Conclusion Cycling leads to an upregulation of MBF. However, cold exposure does not change the MBF. The implementation of CEUS during different physiological demands may provide deeper insight into intramuscular perfusion regulation and regenerative processes.

Zusammenfassung

Hintergrund Der mikrovaskuläre Blutfluss (MBF) und dessen Regulierung sind von Bedeutung für physiologische Anpassungsprozesse. Die in-vivo-Messung des MBFs nach körperlicher Aktivität oder systemischer Kältetherapie kann neue Erkenntnisse über die kapillaren Regulationsmechanismen liefern. Das Ziel dieser Studie war es, die MBF nach körperlicher Aktivität bzw. Kältetherapie durch kontrastmittelverstärkten Ultraschall (CEUS) zu untersuchen.

Methoden 20 gesunde Sportler wurden randomisiert einer Interventions- (IG) oder Kontrollgruppe (CG) zugewiesen. Die MBF wurde in oberflächlichen (Rectus femoris, RF) und tiefen Muskelschichten (Vastus intermedius, VI) des Musculus quadriceps femoris quantifiziert. Repräsentative Perfusionsparameter (Peak Enhancement, PE und Wash-in Area under the Curve, WiAUC) wurden für beide Gruppen nach einem standardisierten Messprotokoll im Ruhezustand (t0), nach Rad-Ergometrie (20 min, 70% Watt max, t1), nach Kaltwasser-Exposition in IG (15 min, 12 °C) oder entsprechend nach 15 min Ruhe in CG (t2) sowie nach 60 min Follow-up (t3) für beide Gruppen gemessen.

Ergebnisse Zum Messzeitpunkt t1 steigerte sich die MBF signifikant im VI im Vergleich zu t0 in beiden Gruppen (p = 0.02). Nach der Kälteexposition (t2) waren keine statistisch signifikanten Änderungen der Perfusionsparameter zu beobachten, ebenso wie nach 60 min (t3), da lediglich nicht signifikante Veränderungen verzeichnet werden konnten (p = 0.14).

Schlussfolgerung Körperliche Aktivität führt zu einer Erhöhung des MBFs, während eine systematische Kälteexposition zu keiner signifikanten Veränderung des MBFs in oberflächlichen und tiefen Muskelschichten führte. Die Anwendung von CEUS kann zu einem besseren Verständnis der intramuskulären Perfusions- und Regulationsmechanismen beitragen.

Supporting information



Publication History

Received: 17 November 2022

Accepted after revision: 17 April 2023

Article published online:
08 August 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Barrett EJ, Rattigan S. Muscle Perfusion: Its Measurement and Role in Metabolic Regulation. Diabetes 2012; 61: 2661-2668
  • 2 Chung YE, Kim KW. Contrast-enhanced ultrasonography: advance and current status in abdominal imaging. Ultrasonography 2015; 34: 3-18
  • 3 Vieira Ramos G, Pinheiro CM, Messa SP. et al. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle. Scientific Reports 2016; 6: 18525
  • 4 Heiss R, Lutter C, Freiwald J. et al. Advances in Delayed-Onset Muscle Soreness (DOMS) – Part II: Treatment and Prevention. Sportverletz Sportschaden 2019; 33: 21-29
  • 5 Stephens JM, Halson SL, Miller J. et al. Effect of body composition on physiological responses to cold-water immersion and the recovery of exercise performance. International Journal of Sports Physiology and Performance 2018; 13: 382-389
  • 6 Hohenauer E, Costello JT, Stoop R. et al. Cold-water or partial-body cryotherapy? Comparison of physiological responses and recovery following muscle damage. Scandinavian Journal of Medicine & Science in Sports 2018; 28: 1252-1262
  • 7 Kwiecien SY, McHugh MP. The cold truth: the role of cryotherapy in the treatment of injury and recovery from exercise. European Journal of Applied Physiology 2021; 121: 2125-2142
  • 8 Fröhlich E, Muller R, Cui XW. et al. Dynamic contrast-enhanced ultrasound for quantification of tissue perfusion. J Ultrasound Med 2015; 34: 179-196
  • 9 Gliemann L, Mortensen SP, Hellsten Y. Methods for the determination of skeletal muscle blood flow: development, strengths and limitations. Eur J Appl Physiol 2018; 118: 1081-1094
  • 10 Kellermann M, Heiss R, Swoboda B. et al. Intramuscular Perfusion Response in Delayed Onset Muscle Soreness (DOMS): A Quantitative Analysis with Contrast-Enhanced Ultrasound (CEUS). Int J Sports Med 2017; 38: 833-841
  • 11 Hüttel M, Golditz T, Mayer I. et al. Effects of Pre- and Post-Exercise Cold-Water Immersion Therapy on Passive Muscle Stiffness. Sportverletz Sportschaden 2020; 34: 72-78
  • 12 Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 2015; 95: 549-601
  • 13 Schroeter S, Rueter L, Heiss R. et al. Exercise Dependent Changes in Periosteal Femur Perfusion. Sports Orthopaedics and Traumatology 2022; 38: 58-65
  • 14 Tufano A, Drudi FM, Angelini F. et al. Contrast-Enhanced Ultrasound (CEUS) in the Evaluation of Renal Masses with Histopathological Validation – Results from a Prospective Single-Center Study. Diagnostics 2022; 12: 1209
  • 15 Wang Y, Li N, Tian X. et al. Evaluation of Renal Microperfusion in Diabetic Patients With Kidney Injury by Contrast-Enhanced Ultrasound. J Ultrasound Med 2021; 40: 1361-1368
  • 16 Simonsohn U, Nelson LD, Simmons JP. p-Curve and Effect Size: Correcting for Publication Bias Using Only Significant Results. Perspect Psychol Sci 2014; 9: 666-681
  • 17 Mertz KH, Bülow J, Holm L. Contrast-enhanced ultrasound using bolus injections of contrast agent for assessment of postprandial microvascular blood volume in human skeletal muscle. Clinical physiology and functional imaging 2018; 38: 864-871
  • 18 Nguyen T, Davidson BP. Contrast Enhanced Ultrasound Perfusion Imaging in Skeletal Muscle. J Cardiovasc Imaging 7 n. Chr 2019; 27: 163-177
  • 19 Saltin B, Rådegran G, Koskolou MD. et al. Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand 1998; 162: 421-436
  • 20 Machado AF, Ferreira PH, Micheletti JK. et al. Can Water Temperature and Immersion Time Influence the Effect of Cold Water Immersion on Muscle Soreness? A Systematic Review and Meta-Analysis. Sports Med 2016; 46: 503-514
  • 21 Rådegran G, Saltin B. Muscle blood flow at onset of dynamic exercise in humans. Am J Physiol 1998; 274: H314-322
  • 22 Merrick MA. Secondary injury after musculoskeletal trauma: a review and update. Journal of athletic training 2002; 37: 209-217
  • 23 Leeder J, Gissane C, van Someren K. et al. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med 2012; 46: 233-240
  • 24 Mawhinney C, Heinonen I, Low DA. et al. Changes in quadriceps femoris muscle perfusion following different degrees of cold-water immersion. J Appl Physiol (1985) 2020; 128: 1392-1401
  • 25 Jäschke M, Weber MA, Fischer C. CEUS-application possibilities in the musculoskeletal system. Radiologe 2018; 58: 579-589
  • 26 Hotfiel T, Hoppe MW, Heiss R. et al. Quantifiable contrast-enhanced ultrasound explores the role of protection, rest, ice (cryotherapy), compression and elevation (PRICE) therapy on microvascular blood flow. Ultrasound in Medicine & Biology 2021; 47: 1269-1278