Subscribe to RSS

DOI: 10.1055/a-2081-1635
Echogenicity of Brain Structures in Huntington’s Disease Patients Evaluated by Transcranial Sonography – Magnetic Resonance Fusion Imaging using Virtual Navigator and Digital Image Analysis
Echogenität von Hirnstrukturen bei Patienten mit Chorea Huntington durch transkranielle Sonografie und Magnetresonanz-Fusionsbildgebung mittels Virtual Navigator und digitaler BildanalyseSupported by: Ostravská Univerzita v Ostravě SGS 11/LF/2022
Supported by: Ministerstvo Zdravotnictví Ceské Republiky National Institute for Neurological Research LX22N

Abstract
Purpose Transcranial sonography (TCS) magnetic resonance (MR) fusion imaging and digital image analysis are useful tools for the evaluation of various brain pathologies. This study aimed to compare the echogenicity of predefined brain structures in Huntington’s disease (HD) patients and healthy controls by TCS-MR fusion imaging using Virtual Navigator and digitized image analysis.
Materials and Methods The echogenicity of the caudate nucleus (CN), substantia nigra (SN), lentiform nucleus (LN), insula, and brainstem raphe (BR) evaluated by TCS-MR fusion imaging using digitized image analysis was compared between 21 HD patients and 23 healthy controls. The cutoff values of echogenicity indices for the CN, LN, insula, and BR with optimal sensitivity and specificity were calculated using receiver operating characteristic analysis.
Results The mean echogenicity indices for the CN (67.0±22.6 vs. 37.9±7.6, p<0.0001), LN (110.7±23.6 vs. 59.7±11.1, p<0.0001), and insula (121.7±39.1 vs. 70.8±23.0, p<0.0001) were significantly higher in HD patients than in healthy controls. In contrast, BR echogenicity (24.8±5.3 vs. 30.1±5.3, p<0.001) was lower in HD patients than in healthy controls. The area under the curve was 90.9%, 95.5%, 84.1%, and 81.8% for the CN, LN, insula, and BR, respectively. The sensitivity and specificity were 86% and 96%, respectively, for the CN and 90% and 100%, respectively, for the LN.
Conclusion Increased CN, LN, and insula echogenicity and decreased BR echogenicity are typical findings in HD patients. The high sensitivity and specificity of the CN and LN hyperechogenicity in TCS-MR fusion imaging make them promising diagnostic markers for HD.
Zusammenfassung
Ziel Transkranielle Sonografie (TCS), Magnetresonanz-Fusionsbildgebung (MR-Fusionsbildgebung) und digitale Bildanalyse sind nützliche Werkzeuge für die Beurteilung verschiedener Hirnpathologien. Ziel dieser Studie war es, durch TCS-MR-Fusionsbildgebung mittels Virtual Navigator und digitaler Bildanalyse die Echogenität vordefinierter Hirnstrukturen bei Patienten mit der Huntington-Krankheit (HD) und gesunden Kontrollpersonen zu vergleichen.
Material und Methoden Die Echogenität des Nucleus caudatus (NC), der Substantia nigra (SN), des Nucleus lentiformis (NL), der Insula und der Hirnstamm-Raphe (BR), die mittels TCS-MR-Fusionsbildgebung und digitalisierter Bildanalyse bewertet wurde, wurde bei 21 Patienten mit Huntington-Krankheit und 23 gesunden Kontrollpersonen verglichen. Die Cutoff-Werte der Echogenitätsindizes für NC, NL, Insula und BR mit optimaler Sensitivität und Spezifität wurden mittels ROC-Analyse (Receiver Operating Characteristic Analyse) berechnet.
Ergebnisse Bei HD-Patienten im Vergleich zu gesunden Kontrollen waren die mittleren Echogenitätsindizes signifikant höher für den NC (67,0 ± 22,6 vs. 37,9 ± 7,6; p<0,0001), den NL (110,7 ± 23,6 vs. 59,7 ± 11,1; p<0,0001) und die Insula (121,7 ± 39,1 vs. 70,8 ± 23,0; p<0,0001). Im Gegensatz dazu war die BR-Echogenität bei HD-Patienten geringer als bei gesunden Kontrollpersonen (24,8 ± 5,3 vs. 30,1 ± 5,3; p<0,001). Die AUC betrug 90,9% für den NC, 95,5% für den NL, 84,1% für die Insula und 81,8% für die BR. Die Sensitivität und Spezifität betrugen 86% bzw. 96% für den NC und 90% bzw. 100% für den NL.
Schlussfolgerung Erhöhte Echogenität von NC, NL und Insula und verringerte BR-Echogenität sind typische Befunde bei HD-Patienten. Die hohe Sensitivität und Spezifität der Hyperechogenität von NC und NL in der TCS-MR-Fusionsbildgebung machen diese zu vielversprechenden diagnostischen Markern für HD.
Publication History
Received: 07 November 2022
Accepted after revision: 29 March 2023
Article published online:
24 May 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1
Macdonald M.
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s
disease chromosomes. Cell 1993; 72 (06) 971-983
MissingFormLabel
- 2
Walker FO.
Huntington’s disease. The Lancet 2007; 369: 218-228
MissingFormLabel
- 3
Berg D,
Godau J,
Walter U.
Transcranial sonography in movement disorders. Lancet Neurol 2008; 7 (11) 1044-1055
MissingFormLabel
- 4
Kostić V,
Mijajlović M,
Smajlović D.
et al.
Transcranial brain sonography findings in two main variants of progressive supranuclear
palsy. Eur J Neurol 2013; 20 (03) 552-557
MissingFormLabel
- 5
Mašková J,
Školoudík D,
Burgetová A.
et al.
Comparison of transcranial sonography-magnetic resonance fusion imaging in Wilson's
and early-onset Parkinson's diseases. Parkinsonism Relat Disord 2016; 28: 87-93
MissingFormLabel
- 6
Walter U,
Skowrońska M,
Litwin T.
et al.
Lenticular nucleus hyperechogenicity in Wilson’s disease reflects local copper, but
not iron accumulation. J Neural Transm 2014; 121 (10) 1273-1279
MissingFormLabel
- 7
Walter U,
Školoudík D.
Transcranial sonography (TCS) of brain parenchyma in movement disorders: quality standards,
diagnostic applications and novel technologies. Ultraschall in Med 2014; 35 (04) 322-331
MissingFormLabel
- 8
Yilmaz R,
Pilotto A,
Roeben B.
et al.
Structural ultrasound of the medial temporal lobe in Alzheimer’s disease. Ultraschall
in Med 2017; 38 (03) 294-300
MissingFormLabel
- 9
Zhou HY,
Huang P,
Sun Q.
et al.
The role of substantia nigra sonography in the differentiation of Parkinson’s disease
and multiple system atrophy. Transl Neurodegener 2018; 7 (01) 1-7
MissingFormLabel
- 10
Postert T,
Lack B,
Kuhn W.
et al.
Basal ganglia alterations and brain atrophy in Huntington’s disease depicted by transcranial
real time sonography. J Neurol Neurosurg Psychiatry 1999; 67 (04) 457-462
MissingFormLabel
- 11
Skoloudík D,
Walter U.
Method and validity of transcranial sonography in movement disorders. Int Rev Neurobiol
2010; 90: 7-34
MissingFormLabel
- 12
Krogias C,
Strassburger K,
Eyding J.
et al.
Depression in patients with Huntington disease correlates with alterations of the
brain stem raphe depicted by transcranial sonography. J Psychiatry Neurosci 2011;
36 (03) 187-194
MissingFormLabel
- 13
Lambeck J,
Niesen WD,
Reinhard M.
et al.
Substantia nigra hyperechogenicity in hypokinetic Huntington's disease patients. J
Neurol 2015; 262 (03) 711-717
MissingFormLabel
- 14
Saft C,
Hoffmann R,
Strassburger-Krogias K.
et al.
Echogenicity of basal ganglia structures in different Huntington's disease phenotypes.
J Neural Transm 2015; 122 (06) 825-833
MissingFormLabel
- 15
Witkowski G,
Jachinska K,
Stepniak I.
et al.
Alterations in transcranial sonography among Huntington's disease patients with psychiatric
symptoms. J Neural Transm 2020; 127 (07) 1047-1055
MissingFormLabel
- 16
Školoudík D,
Bártová P,
Mašková J.
et al.
Transcranial Sonography of the Insula: Digitized Image Analysis of Fusion Images with
Magnetic Resonance. Ultraschall in Med 2016; 37 (06) 604-608
MissingFormLabel
- 17
Školoudík D,
Mašková J,
Dušek P.
et al.
Digitized Image Analysis of Insula Echogenicity Detected by TCS-MR Fusion Imaging
in Wilson's and Early-Onset Parkinson's Diseases. Ultrasound Med Biol 2020; 46 (03)
842-848
MissingFormLabel
- 18
Bachoud-Lévi AC,
Ferreira J,
Massart R.
et al.
International Guidelines for the Treatment of Huntington’s Disease. Front Neurol 2019;
10: 710
MissingFormLabel
- 19
Blahuta J,
Soukup T,
Jelinkova M.
et al.
A new program for highly reproducible automatic evaluation of the substantia nigra
from transcranial sonographic images. Biomed Pap Med Fac Univ Palacky Olomouc Czech
Repub 2014; 158 (04) 621-627
MissingFormLabel
- 20
Šilhán P,
Jelínková M,
Walter U.
et al.
Transcranial sonography of brainstem structures in panic disorder. Psychiatry Res
2015; 234 (01) 137-143
MissingFormLabel
- 21
Skoloudík D,
Jelínková M,
Blahuta J.
et al.
Transcranial sonography of the substantia nigra: digital image analysis. AJNR Am J
Neuroradiol 2014; 35 (12) 2273-2278
MissingFormLabel
- 22
Liu X.
Classification accuracy and cut point selection. Stat Med 2012; 31 (23) 2676-2686
MissingFormLabel
- 23
Fukunaga M,
Li TQ,
van Gelderen P.
et al.
Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast.
Proc Natl Acad Sci U S A 2010; 107 (08) 3834-3839
MissingFormLabel
- 24
Chen L,
Hua J,
Ross CA.
et al.
Altered brain iron content and deposition rate in Huntington’s disease as indicated
by quantitative susceptibility MRI. J Neurosci Res 2019; 97 (04) 467-479
MissingFormLabel
- 25
Martínez-Horta S,
Perez-Perez J,
Sampedro F.
et al.
Structural and metabolic brain correlates of apathy in Huntington's disease. Mov Disord
2018; 33 (07) 1151-1159
MissingFormLabel
- 26
Peinemann A,
Schuller S,
Pohl C.
et al.
Executive dysfunction in early stages of Huntington’s disease is associated with striatal
and insular atrophy: a neuropsychological and voxel-based morphometric study. J Neurol
Sci 2005; 239 (01) 11-19
MissingFormLabel
- 27
Tai YF,
Pavese N,
Gerhard A.
et al.
Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain
2007; 130: 1759-1766
MissingFormLabel
- 28
Du X,
Pang TY,
Hannan AJ.
A Tale of Two Maladies? Pathogenesis of Depression with and without the Huntington’s
Disease Gene Mutation. Front Neurol 2013; 4: 81
MissingFormLabel
- 29
Paulsen JS,
Wang C,
Duff K.
et al.
Challenges assessing clinical endpoints in early Huntington disease. Mov Disord 2010;
25 (15) 2595-2603
MissingFormLabel