Subscribe to RSS
DOI: 10.1055/a-2081-1830
Decarboxylative, Radical C–C Bond Formation with Alkyl or Aryl Carboxylic Acids: Recent Advances
This work was supported by the Engineering and Physical Sciences Research Council (EP/S028595/1 and EP/R020752/1). A.J.C. thanks the Royal Society for a University Research Fellowship (UF150533) and Ph.D. studentship funding (S.L.H), the University of Bath for an URSA Ph.D. studentship (H.E.A.) and a Global Doctoral Scholarship (Q.C), the EPSRC and associated companies for CASE or iCASE Ph.D. studentships (J.C.T.-D. with Syngenta, G.D.J. with AstraZeneca), and AstraZeneca (H.E.A), Janssen (S.L.H), and UCB Biopharma (Q.C.) for generous financial support.
Dedicated to the memory of Professor John Fossey
Abstract
The ubiquity of carboxylic acids as naturally derived or man-made chemical feedstocks has spurred the development of powerful, decarboxylative C–C bond-forming transformations for organic synthesis. Carboxylic acids benefit not only from extensive commercial availability, but are stable surrogates for organohalides or organometallic reagents in transition-metal-catalysed cross-coupling. Open shell reactivity of carboxylic acids (or derivatives thereof) to furnish carbon-centred radicals is proving transformative for synthetic chemistry, enabling novel and strategy-level C(sp3)–C bond disconnections with exquisite chemoselectivity. This short review will summarise several of the latest advances in this ever-expanding area.
1 Introduction
2 Improved Decarboxylative Arylations
3 sp3–sp3 Cross-Coupling of Carboxylic Acids with Aliphatic Bromides
4 sp3–sp3 Cross-Coupling of Carboxylic Acids with Aliphatic Alcohols and Amines
5 Doubly Decarboxylative sp3–sp3 Cross-Coupling of Carboxylic Acids
6 Decarboxylative C–C Bond Formation from (Hetero)aryl Carboxylic Acids
7 Conclusions
Key words
decarboxylative - C–C coupling - radicals - carboxylic acids - photoredox catalysis - electrochemistryPublication History
Received: 12 March 2023
Accepted after revision: 17 April 2023
Accepted Manuscript online:
26 April 2023
Article published online:
30 May 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 For a review of carboxylic acids as building blocks in catalytic asymmetric reactions, see: Majumdar N. ACS Catal. 2022; 12: 8291
- 2 For a review of large-scale amidations in process chemistry, see: Magano J. Org. Process Res. Dev. 2022; 26: 1562
- 3a For a review of partial reductions of carboxylic acids and their derivatives to aldehydes, see: Yang Z. Org. Chem. Front. 2022; 9: 3908
- 3b For a recent catalytic reduction of carboxylic acids to alcohols, see: Stoll EL, Barber T, Hirst DJ, Denton RM. Chem. Commun. 2022; 58: 3509
- 4 For a review of the Curtius rearrangement, see: Ghosh AK, Brindisi M, Sarkar A. ChemMedChem 2018; 13: 2351
- 5 Dutta S, Bhattacharya T, Geffers FJ, Bürger M, Maiti D, Werz DB. Chem. Sci. 2022; 13: 2551
- 6a Zhu X, Fu H. Chem. Commun. 2021; 57: 9656
- 6b Karmakar S, Silamkoti A, Meanwell NA, Mathur A, Gupta AK. Adv. Synth. Catal. 2021; 363: 3693
- 6c Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. ACS Catal. 2021; 11: 1640
- 6d Chen H, Liu YA, Liao X. Synthesis 2021; 53: 1
- 6e Moon PJ, Lundgren RJ. ACS Catal. 2020; 10: 1742
- 6f Penteado F, Lopes EF, Alves D, Perin G, Jacob RG, Lenardão EJ. Chem. Rev. 2019; 119: 7113
- 6g Rahman M, Mukherjee A, Kovalev IS, Kopchuk DS, Zyryanov GV, Tsurkan MV, Majee A, Ranu BC, Charushin VN, Chupakhin ON, Santra S. Adv. Synth. Catal. 2019; 361: 2161
- 6h Murarka S. Adv. Synth. Catal. 2018; 360: 1735
- 6i Schwarz J, König B. Green Chem. 2018; 20: 323
- 6j Perry GJ. P, Larrosa I. Eur. J. Org. Chem. 2017; 3517
- 6k Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
- 6l Jin Y, Fu H. Asian J. Org. Chem. 2017; 6: 368
- 6m Patra T, Maiti D. Chem. Eur. J. 2017; 23: 7382
- 6n Guo L.-N, Wang H, Duan X.-H. Org. Biomol. Chem. 2016; 14: 7380
- 6o Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
- 6p Miao J, Ge H. Synlett 2014; 25: 911
- 6q Wang Z.-L. Adv. Synth. Catal. 2013; 355: 2745
- 6r Park K, Lee S. RSC Adv. 2013; 3: 14165
- 6s Dzik WI, Lange PP, Gooßen LJ. Chem. Sci. 2012; 3: 2671
- 6t Cornella J, Larrosa I. Synthesis 2012; 44: 653
- 6u Shang R, Liu L. Sci. China Chem. 2011; 54: 1670
- 6v Rodríguez N, Gooßen LJ. Chem. Soc. Rev. 2011; 40: 5030
- 6w Gooßen LJ, Collet F, Gooßen K. Isr. J. Chem. 2010; 50: 617
- 6x Gooßen LJ, Rodríguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
- 7a Lu H, Yu T.-Y, Xu P.-F, Wei H. Chem. Rev. 2021; 121: 365
- 7b Wang Z, Wang X, Nishihara Y. Chem. Asian J. 2020; 15: 1234
- 8 Kolbe H. Ann. Chem. Pharm. 1848; 64: 339
- 9a Barton DH. R, Zard SZ. Pure Appl. Chem. 1986; 58: 675
- 9b Saraiva MF, Couri MR. C, Le Hyaric M, de Almeida MV. Tetrahedron 2009; 65: 3563
- 9c Crich D, Quintero L. Chem. Rev. 1989; 89: 1413
- 10 Griffin JD, Zeller MA, Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 11340
- 11 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies, 1st ed. CRC Press; Boca Raton, FL: 2007
- 12a Mao R, Bera S, Turla AC, Hu X. J. Am. Chem. Soc. 2021; 143: 14667
- 12b Na CG, Ravelli D, Alexanian EJ. J. Am. Chem. Soc. 2020; 142: 44
- 13 Dang HT, Haug GC, Nguyen VT, Vuong NT. H, Arman HD, Larionov OV. ACS Catal. 2020; 10: 11448
- 14 Liang Y, Zhang X, MacMillan DW. C. Nature 2018; 559: 83
- 15a McClain EJ, Wortmana AK, Stephenson CR. J. Chem. Sci. 2022; 13: 12158
- 15b McClain EJ, Monos TM, Mori M, Beatty JW, Stephenson CR. J. ACS Catal. 2020; 10: 12636
- 15c Chen H, Liao X. Tetrahedron 2019; 75: 4186
- 15d Chen H, Sun S, Liao X. Org. Lett. 2019; 21: 3625
- 15e Chen H, Hu L, Ji W, Yao L, Liao X. ACS Catal. 2018; 8: 10479
- 15f McAtee RC, Beatty JW, McAtee CC, Stephenson CR. J. Org. Lett. 2018; 20: 3491
- 15g Beatty JW, Douglas JJ, Miller R, McAtee RC, Cole KP, Stephenson CR. J. Chem 2016; 1: 456
- 15h Beatty JW, Douglas JJ, Cole KP, Stephenson CR. J. Nat. Commun. 2015; 6: 7919
- 16a Kammer LM, Badir SO, Hu R.-M, Molander GA. Chem. Sci. 2021; 12: 5450
- 16b Zheng C, Wang G.-Z, Shang R. Adv. Synth. Catal. 2019; 361: 4500
- 17 Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
- 18a Chen T.-G, Zhang H, Mykhailiuk PK, Merchant RR, Smith CA, Qin T, Baran PS. Angew. Chem. Int. Ed. 2019; 58: 2454
- 18b Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan C.-M, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
- 18c Toriyama F, Cornella J, Wimmer L, Chen T.-G, Dixon DD, Creech G, Baran PS. J. Am. Chem. Soc. 2016; 138: 11132
- 18d Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801
- 19a Li H, Breen CP, Seo H, Jamison TF, Fang Y.-Q, Bio MM. Org. Lett. 2018; 20: 1338
- 19b Huihui KM. M, Caputo JA, Melchor Z, Olivares AM, Spiewak AM, Johnson KA, DiBenedetto TA, Kim S, Ackerman LK. G, Weix DJ. J. Am. Chem. Soc. 2016; 138: 5016
- 20 Zhang T, Wang N.-X, Xing Y. J. Org. Chem. 2018; 83: 7559
- 21 Parsaee F, Senarathna MC, Kannangara PB, Alexander SN, Arche PD. E, Welin ER. Nat. Rev. Chem. 2021; 5: 486
- 22a Kitcatt DM, Nicolle S, Lee A.-L. Chem. Soc. Rev. 2022; 51: 1415
- 22b Kanegusuku AL. G, Roizen JL. Angew. Chem. Int. Ed. 2021; 60: 21116
- 23 For a representative example of addition to aldehydes see: Xiao J, Li Z, Montgomery J. J. Am. Chem. Soc. 2021; 143: 21234
- 24 Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
- 25 Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
- 26a Gao Y, Hill DE, Hao W, McNicholas BJ, Vantourout JC, Hadt RG, Reisman SE, Blackmond DG, Baran PS. J. Am. Chem. Soc. 2021; 143: 9478
- 26b Koyanagi T, Herath A, Chong A, Ratnikov M, Valiere A, Chang J, Molteni V, Loren J. Org. Lett. 2019; 21: 816
- 27 Li QY, Gockel SN, Lutovsky GA, DeGlopper KS, Baldwin NJ, Bundesmann MW, Tucker JW, Bagley SW, Yoon TP. Nat. Chem. 2022; 14: 94
- 28 Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
- 29a Tan G, Das M, Keum H, Bellotti P, Daniliuc C, Glorius F. Nat. Chem. 2022; 14: 1174
- 29b Patra T, Bellotti P, Strieth-Kalthoff F, Glorius F. Angew. Chem. Int. Ed. 2020; 59: 3172
- 29c Patra T, Mukherjee S, Ma J, Strieth-Kalthoff F, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 10514
- 30 Kullmer CN. P, Kautzky JA, Krska SW, Nowak T, Dreher SD, MacMillan DW. C. Science 2022; 376: 532
- 31 Salgueiro DC, Chi BK, Guzei IA, García-Reynaga P, Weix DJ. Angew. Chem. Int. Ed. 2022; 61: e202205673
- 32 West MS, Gabbey AL, Huestis MP, Rousseaux SA. L. Org. Lett. 2022; 24: 8441
- 33 Brewster JT. II, Randall SD, Kowalski J, Cruz C, Shoemaker R, Tarlton E, Hinklin RJ. Org. Lett. 2022; 24: 9123
- 34 Palkowitz MD, Laudadio G, Kolb S, Choi J, Oderinde MS, Ewing TE.-H, Bolduc PN, Chen T, Zhang H, Cheng PT. W, Zhang B, Mandler MD, Blasczak VD, Richter JM, Collins MR, Schioldager RL, Bravo M, Dhar TG. M, Vokits B, Zhu Y, Echeverria P.-G, Poss MA, Shaw SA, Clementson S, Petersen NN, Mykhailiuk PK, Baran PS. J. Am. Chem. Soc. 2022; 144: 17709
- 35 Harwood SJ, Palkowitz MD, Gannett CN, Perez P, Yao Z, Sun L, Abruña HD, Anderson SL, Baran PS. Science 2022; 375: 745
- 36 Johnston CP, Smith RT, Allmendinger S, MacMillan DW. C. Nature 2016; 536: 322
- 37 Kang K, Weix DJ. Org. Lett. 2022; 24: 2853
- 38 Liu W, Lavagnino MN, Gould CA, Alcázar J, MacMillan DW. C. Science 2021; 374: 1258
- 39 Sakai HA, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 6185
- 40 Zhang Z, Cernak T. Angew. Chem. Int. Ed. 2021; 60: 27293
- 41 Zhang B, Gao Y, Hioki Y, Oderinde MS, Qiao JX, Rodriguez KX, Zhang H.-J, Kawamata Y, Baran PS. Nature 2022; 606: 313
- 42 Seong CM, Ansel AQ, Roberts CC. J. Org. Chem. 2023; 88: 3935
- 43 Tsymbal AV, Bizzini LD, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 21278
- 44 Hoover JM. Comments Inorg. Chem. 2017; 37: 169
- 45 Varenikov A, Shapiro E, Gandelman M. Chem. Rev. 2021; 121: 412
- 46 For a general review of single-electron aromatic decarboxylation, see: Hu X.-Q, Liu Z.-K, Hou Y.-X, Gao Y. iScience 2020; 23: 101266
- 47 Abderrazak Y, Bhattacharyya A, Reiser O. Angew. Chem. Int. Ed. 2021; 60: 21100
- 48a Xu P, López-Rojas P, Ritter T. J. Am. Chem. Soc. 2021; 143: 5349
- 48b Su W, Xu P, Ritter T. Angew. Chem. Int. Ed. 2021; 60: 24012
- 49 Chen TQ, Pedersen PS, Dow NW, Fayad R, Hauke CE, Rosko MC, Danilov EO, Blakemore DC, Dechert-Schmitt A.-M, Knauber T, Castellano FN, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 8296
- 50a Wei Q, Lee Y, Liang W, Chen X, Mu B.-s, Cui X.-Y, Wu W, Bai S, Liu Z. Nat. Commun. 2022; 13: 7112
- 50b Deng X, Guo J, Zhang X, Wang X, Su W. Angew. Chem. Int. Ed. 2021; 60: 24510
- 51 Dow NW, Pedersen PS, Chen TQ, Blakemore DC, Dechert-Schmitt A.-M, Knauber T, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 6163
For reviews of decarboxylative cross-coupling, see:
For reviews of decarbonylative cross-coupling, see:
For reviews on Barton decarboxylation reactions, see:
For other examples of decarboxylative borylation of aromatic carboxylic acids, see: