Subscribe to RSS
DOI: 10.1055/a-2098-1999
Advances in artificial intelligence and computer science for computer-aided diagnosis of colorectal polyps: current status
Abstract
Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursor lesions. However, colonoscopy outcomes may differ depending on the endoscopist performing the procedure. Among others, this relates to differences in ability of endoscopists to accurately assess polyp characteristics that are essential for clinical decision making. These characteristics concern polyp location, size and morphology, as well as several histological polyp features that can be predicted based on polyp phenotype. Polyp assessment with aid of computer-aided diagnosis (CADx) systems might provide opportunities to optimize general polyp assessment accuracy. However, a broad overview of available studies concerning performance of CADx systems for diagnosis of different polyp characteristics and histological features is lacking. Hence, within this narrative review we aimed to provide such an overview. We highlight that most significant advancements in the field of computer-aided polyp assessment involve systems for optical differentiation between neoplastic and non-neoplastic lesions, with several studies showing the ability of such systems to perform at expert levels in real-time clinical settings. With commercial availability of some of these systems, first steps towards improved endoscopy quality with use of CADx systems in daily practice might be ahead. However, development of CADx systems for assessment of polyp characteristics size and location, as well as prediction of degree of dysplasia and invasion depth, are still in more preliminary stages while evaluation of these systems in real-time clinical settings is still warranted. Moreover, computer-aided diagnosis of polyp morphology is a field yet to be explored.
Publication History
Received: 04 February 2023
Accepted after revision: 08 May 2023
Article published online:
16 August 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Sung H, Ferlay J, Siegel RL. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209-249 DOI: 10.3322/caac.21660. (PMID: 33538338)
- 2 Nguyen LH, Goel A, Chung DC. Pathways of colorectal carcinogenesis. Gastroenterology 2020; 158: 291-302 DOI: 10.1053/j.gastro.2019.08.059. (PMID: 31622622)
- 3 Rex DK, Boland CR, Dominitz JA. et al. Colorectal cancer screening: Recommendations for physicians and patients from the U.S. Multi-Society Task Force on Colorectal Cancer. Gastrointest Endosc 2017; 86: 18-33
- 4 Saftoiu A, Hassan C, Areia M. et al. Role of gastrointestinal endoscopy in the screening of digestive tract cancers in Europe: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2020; 52: 293-304 DOI: 10.1055/a-1104-5245. (PMID: 32052404)
- 5 Zauber AG. The impact of screening on colorectal cancer mortality and incidence: has it really made a difference?. Dig Dis Sci 2015; 60: 681-691 DOI: 10.1007/s10620-015-3600-5. (PMID: 25740556)
- 6 O'Connor SA, Hewett DG, Watson MO. et al. Accuracy of polyp localization at colonoscopy. Endosc Int Open 2016; 4: E642-E646 DOI: 10.1055/s-0042-105864. (PMID: 27556071)
- 7 de Vries AH, Bipat S, Dekker E. et al. Polyp measurement based on CT colonography and colonoscopy: variability and systematic differences. Eur Radiol 2010; 20: 1404-1413 DOI: 10.1007/s00330-009-1683-0. (PMID: 20033180)
- 8 Moug SJ, Vernall N, Saldanha J. et al. Endoscopists' estimation of size should not determine surveillance of colonic polyps. Colorectal Dis 2010; 12: 646-650
- 9 Eichenseer PJ, Dhanekula R, Jakate S. et al. Endoscopic mis-sizing of polyps changes colorectal cancer surveillance recommendations. Dis Colon Rectum 2013; 56: 315-321 DOI: 10.1097/DCR.0b013e31826dd138. (PMID: 23392145)
- 10 Chaptini L, Chaaya A, Depalma F. et al. Variation in polyp size estimation among endoscopists and impact on surveillance intervals. Gastrointest Endosc 2014; 80: 652-659
- 11 van Doorn SC, Hazewinkel Y, East JE. et al. Polyp morphology: an interobserver evaluation for the Paris classification among international experts. Am J Gastroenterol 2015; 110: 180-187
- 12 Kim JH, Nam KS, Kwon HJ. et al. Assessment of colon polyp morphology: Is education effective?. World J Gastroenterol 2017; 23: 6281-6286 DOI: 10.3748/wjg.v23.i34.6281. (PMID: 28974894)
- 13 Lee YJ, Kim ES, Park KS. et al. Interobserver agreement in the endoscopic classification of colorectal laterally spreading tumors: a multicenter study between experts and trainees. Dig Dis Sci 2014; 59: 2550-2556
- 14 Kuiper T, Marsman WA, Jansen JM. et al. Accuracy for optical diagnosis of small colorectal polyps in nonacademic settings. Clin Gastroenterol Hepatol 2012; 10: 1016-1020 quiz e1079
- 15 Ladabaum U, Fioritto A, Mitani A. et al. Real-time optical biopsy of colon polyps with narrow band imaging in community practice does not yet meet key thresholds for clinical decisions. Gastroenterology 2013; 144: 81-91
- 16 Patel SG, Schoenfeld P, Kim HM. et al. Real-time characterization of diminutive colorectal polyp histology using narrow-band imaging: implications for the resect and discard strategy. Gastroenterology 2016; 150: 406-418 DOI: 10.1053/j.gastro.2015.10.042. (PMID: 26522260)
- 17 Ignjatovic A, East JE, Suzuki N. et al. Optical diagnosis of small colorectal polyps at routine colonoscopy (Detect InSpect ChAracterise Resect and Discard; DISCARD trial): a prospective cohort study. Lancet Oncology 2009; 10: 1171-1178 DOI: 10.1016/S1470-2045(09)70329-8. (PMID: 19910250)
- 18 Komeda Y, Kashida H, Sakurai T. et al. Magnifying narrow band imaging (nbi) for the diagnosis of localized colorectal lesions using the Japan NBI Expert Team (JNET) classification. Oncology 2017; 93: 49-54 DOI: 10.1159/000481230. (PMID: 29258091)
- 19 Sumimoto K, Tanaka S, Shigita K. et al. Diagnostic performance of Japan NBI Expert Team classification for differentiation among noninvasive, superficially invasive, and deeply invasive colorectal neoplasia. Gastrointest Endosc 2017; 86: 700-709
- 20 Saitoh Y, Obara T, Watari J. et al. Invasion depth diagnosis of depressed type early colorectal cancers by combined use of videoendoscopy and chromoendoscopy. Gastrointest Endosc 1998; 48: 362-370 DOI: 10.1016/s0016-5107(98)70004-5. (PMID: 9786107)
- 21 Horie H, Togashi K, Kawamura YJ. et al. Colonoscopic stigmata of 1 mm or deeper submucosal invasion in colorectal cancer. Dis Colon Rectum 2008; 51: 1529-1534 DOI: 10.1007/s10350-008-9263-y. (PMID: 18592315)
- 22 Backes Y, Schwartz MP, Ter Borg F. et al. Multicentre prospective evaluation of real-time optical diagnosis of T1 colorectal cancer in large non-pedunculated colorectal polyps using narrow band imaging (the OPTICAL study). Gut 2019; 68: 271-279 DOI: 10.1136/gutjnl-2017-314723. (PMID: 29298873)
- 23 Rex DK, Kahi C, O'Brien M. et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc 2011; 73: 419-422 DOI: 10.1016/j.gie.2011.01.023. (PMID: 21353837)
- 24 Houwen B, Hassan C, Coupé VMH. et al. Definition of competence standards for optical diagnosis of diminutive colorectal polyps: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2022; 54: 88-99 DOI: 10.1055/a-1689-5130. (PMID: 34872120)
- 25 Ferlitsch M, Moss A, Hassan C. et al. Colorectal polypectomy and endoscopic mucosal resection (EMR): European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy 2017; 49: 270-297 DOI: 10.1055/s-0043-102569. (PMID: 28212588)
- 26 Kaltenbach T, Anderson JC, Burke CA. et al. Endoscopic removal of colorectal lesions: Recommendations by the US Multi-Society Task Force on Colorectal Cancer. Am J Gastroenterol 2020; 115: 435-464 DOI: 10.14309/ajg.0000000000000555. (PMID: 32058340)
- 27 Hassan C, Antonelli G, Dumonceau JM. et al. Post-polypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2020. Endoscopy 2020; 52: 687-700 DOI: 10.1055/a-1185-3109. (PMID: 32572858)
- 28 Gupta S, Lieberman D, Anderson JC. et al. Recommendations for follow-up after colonoscopy and polypectomy: A consensus update by the US Multi-Society Task Force on Colorectal Cancer. Am J Gastroenterol 2020; 115: 415-434 DOI: 10.14309/ajg.0000000000000544. (PMID: 32039982)
- 29 Chowdhury M, Sadek AW. Advantages and limitations of artificial intelligence. Artificial Intelligence Applications to Critical Transportation Issues. Transportation Research Circular E-C168.
- 30 van der Sommen F, de Groof J, Struyvenberg M. et al. Machine learning in GI endoscopy: practical guidance in how to interpret a novel field. Gut 2020; 69: 2035-2045 DOI: 10.1136/gutjnl-2019-320466. (PMID: 32393540)
- 31 Fujita H. AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol Phys Technol 2020; 13: 6-19 DOI: 10.1007/s12194-019-00552-4. (PMID: 31898014)
- 32 Hassan C, Spadaccini M, Iannone A. et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis. Gastrointest Endosc 2021; 93: 77-85 e76 DOI: 10.1016/j.gie.2020.06.059. (PMID: 32598963)
- 33 Deliwala SS, Hamid K, Barbarawi M. et al. Artificial intelligence (AI) real-time detection vs. routine colonoscopy for colorectal neoplasia: a meta-analysis and trial sequential analysis. Int J Colorectal Dis 2021; 36: 2291-2303 DOI: 10.1007/s00384-021-03929-3. (PMID: 33934173)
- 34 Segev L, Kalady MF, Plesec T. et al. The location of premalignant colorectal polyps under age 50: a further rationale for screening sigmoidoscopy. Int J Colorectal Dis 2020; 35: 529-535
- 35 Stauffer CMP. Colonoscopy. Treasure Island (FL): StatPearls Publishing; 2022
- 36 Phillips M, Patel A, Meredith P. et al. Segmental colonic length and mobility. Ann R Coll Surg Engl 2015; 97: 439-444 DOI: 10.1308/003588415X14181254790527. (PMID: 26274737)
- 37 Saunders BP, Phillips RK, Williams CB. Intraoperative measurement of colonic anatomy and attachments with relevance to colonoscopy. Br J Surg 1995; 82: 1491-1493 DOI: 10.1002/bjs.1800821113. (PMID: 8535800)
- 38 Madiba TE, Haffajee MR. Anatomical variations in the level of origin of the sigmoid colon from the descending colon and the attachment of the sigmoid mesocolon. Clin Anat 2010; 23: 179-185 DOI: 10.1002/ca.20910. (PMID: 20014390)
- 39 Moug SJ, Fountas S, Johnstone MS. et al. Analysis of lesion localisation at colonoscopy: outcomes from a multi-centre U.K. study. Surg Endosc 2017; 31: 2959-2967
- 40 Cho YB, Lee WY, Yun HR. et al. Tumor localization for laparoscopic colorectal surgery. World J Surg 2007; 31: 1491-1495 DOI: 10.1007/s00464-020-07443-5. (PMID: 32072278)
- 41 Lam DT, Kwong KH, Lam CW. et al. How useful is colonoscopy in locating colorectal lesions?. Surg Endosc 1998; 12: 839-841 DOI: 10.1007/s004649900725. (PMID: 9602002)
- 42 Tabibian N, Michaletz PA, Schwartz JT. et al. Use of an endoscopically placed clip can avoid diagnostic errors in colonoscopy. Gastrointest Endosc 1988; 34: 262-264 DOI: 10.1016/s0016-5107(88)71326-7. (PMID: 3391381)
- 43 Vignati P, Welch JP, Cohen JL. Endoscopic localization of colon cancers. Surg Endosc 1994; 8: 1085-1087 DOI: 10.1007/BF00705725. (PMID: 7992181)
- 44 Piscatelli N, Hyman N, Osler T. Localizing colorectal cancer by colonoscopy. Arch Surg 2005; 140: 932-935 DOI: 10.1001/archsurg.140.10.932. (PMID: 16230540)
- 45 Che K, Ye C, Yao Y. et al. Deep learning-based biological anatomical landmark detection in colonoscopy videos. arXiv preprint arXiv. 210802948. 2021
- 46 Saito H, Tanimoto T, Ozawa T. et al. Automatic anatomical classification of colonoscopic images using deep convolutional neural networks. Gastroenterol Rep 2021; 9: 226-233 DOI: 10.1093/gastro/goaa078. (PMID: 34316372)
- 47 Yao H, Stidham RW, Gao Z. et al. Motion-based camera localization system in colonoscopy videos. Med Image Anal 2021; 73: 102180 DOI: 10.1016/j.media.2021.102180. (PMID: 34303888)
- 48 Ellul P, Fogden E, Simpson C. et al. Colonic tumour localization using an endoscope positioning device. Eur J Gastroenterol Hepatol 2011; 23: 488-491 DOI: 10.1097/MEG.0b013e328346974b. (PMID: 21494153)
- 49 Szura M, Pasternak A, Solecki R. et al. Accuracy of preoperative tumor localization in large bowel using 3D magnetic endoscopic imaging: randomized clinical trial. Surg Endosc 2017; 31: 2089-2095 DOI: 10.1007/s00464-016-5203-4. (PMID: 27572063)
- 50 Cheung HY, Chung CC, Kwok SY. et al. Improvement in colonoscopy performance with adjunctive magnetic endoscope imaging: a randomized controlled trial. Endoscopy 2006; 38: 214-217
- 51 Houwen B, Hartendorp F, Giotis I. et al. Computer-aided classification of colorectal segments during colonoscopy: a deep learning approach based on images of a magnetic endoscopic positioning device. Scand J Gastroenterol 2022; DOI: 10.1080/00365521.2022.2151320.
- 52 Mahmood F, Durr NJ. Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med Image Anal 2018; 48: 230-243 DOI: 10.1016/j.media.2018.06.005. (PMID: 29990688)
- 53 Freedman D, Blau Y, Katzir L. et al. Detecting deficient coverage in colonoscopies. IEEE Trans Med Imaging 2020; 39: 3451-3462 DOI: 10.1109/TMI.2020.2994221. (PMID: 32746092)
- 54 Hwang SJ, Park SJ, Kim GM. et al. Unsupervised monocular depth estimation for colonoscope system using feedback network. Sensors 2021; 21: 2691 DOI: 10.3390/s21082691. (PMID: 33920357)
- 55 Armin MA, Barnes N, Alvarez J. et al. Learning camera pose from optical colonoscopy frames through deep convolutional neural network (CNN). In: Cardoso MJ, Arbel T, Luo X. Computer Assisted and Robotic Endoscopy and Clinical Image-Based Procedures. Cham: Springer International Publishing; 2017: 50-59
- 56 Zhang S, Zhao L, Huang S. et al. A template-based 3D reconstruction of colon structures and textures from stereo colonoscopic images. IEEE Transactions Med Robotics Bionics 2021; 3: 85-95
- 57 Walluscheck S, Wittenberg T, Bruns V. et al. Partial 3D-reconstruction of the colon from monoscopic colonoscopy videos using shape-from-motion and deep learning. Current Directions in Biomedical Engineering 2021; 7: 335-338
- 58 Hong D, Tavanapong W, Wong J. et al. 3D Reconstruction of virtual colon structures from colonoscopy images. Comput Med Imaging Graph 2014; 38: 22-33
- 59 Ma R, Wang R, Pizer S. et al. Real-time 3D reconstruction of colonoscopic surfaces for determining missing regions. In: Shen D, Liu T, Peters TM. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Cham: Springer International Publishing; 2019: 573-582
- 60 Hassan C, Pickhardt PJ, Kim DH. et al. Systematic review: distribution of advanced neoplasia according to polyp size at screening colonoscopy. Aliment Pharmacol Ther 2010; 31: 210-217 DOI: 10.1111/j.1365-2036.2009.04160.x. (PMID: 19814745)
- 61 Itoh H, Roth HR, Lu L. et al. Towards automated colonoscopy diagnosis: binary polyp size estimation via unsupervised depth learning. In: Frangi AF, Schnabel JA, Davatzikos C. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. Cham: Springer International Publishing; 2018: 611-619
- 62 Itoh H, Oda M, Jiang K. et al. Binary polyp-size classification based on deep-learned spatial information. Int J Comput Assist Radiol Surg 2021; 16: 1817-1828 DOI: 10.1007/s11548-021-02477-z. (PMID: 34468971)
- 63 Su R, Liu J, Wu B. et al. Accurate measurement of colorectal polyps using computer-aided analysis. Eur J Gastroenterol Hepatol 2021; 33: 701-708 DOI: 10.1097/MEG.0000000000002162. (PMID: 33787542)
- 64 Abdelrahim M, Saiga H, Maeda N. et al. Automated sizing of colorectal polyps using computer vision. Gut 2022; 71: 7-9 DOI: 10.1136/gutjnl-2021-324510. (PMID: 34266967)
- 65 Kwak MS, Cha JM, Jeon JW. et al. Artificial intelligence-based measurement outperforms current methods for colorectal polyp size measurement. Dig Endosc 2022; 34: 1188-1195 DOI: 10.1111/den.14318. (PMID: 35385184)
- 66 Chadebecq F, Tilmant C, Bartoli A. How big is this neoplasia? live colonoscopic size measurement using the Infocus-Breakpoint. Med Image Anal 2015; 19: 58-74 DOI: 10.1016/j.media.2014.09.002. (PMID: 25277373)
- 67 Yoshioka M, Sakaguchi Y, Utsunomiya D. et al. Virtual scale function of gastrointestinal endoscopy for accurate polyp size estimation in real-time: a preliminary study. J Biomed Opt 2021; 26: 096002 DOI: 10.1117/1.JBO.26.9.096002. (PMID: 34472242)
- 68 Visentini-Scarzanella M, Kawasaki H, Furukawa R. et al. A structured light laser probe for gastrointestinal polyp size measurement: a preliminary comparative study. Endosc Int Open 2018; 6: E602-E609 DOI: 10.1055/a-0577-2798. (PMID: 29756018)
- 69 Shimoda R, Akutagawa T, Tomonaga M. et al. Estimating colorectal polyp size with a virtual scale endoscope and visual estimation during colonoscopy: Prospective, preliminary comparison of accuracy. Dig Endosc 2022; 34: 1471-1477
- 70 Williams JG, Pullan RD, Hill J. et al. Management of the malignant colorectal polyp: ACPGBI position statement. Colorectal Dis 2013; 15: 1-38 DOI: 10.1111/codi.12262. (PMID: 23848492)
- 71 Matsuda T, Saito Y, Nakajima T. et al. Macroscopic estimation of submucosal invasion in the colon. Techniq Gastrointest Endosc 2011; 13: 24-32
- 72 Ikehara H, Saito Y, Matsuda T. et al. Diagnosis of depth of invasion for early colorectal cancer using magnifying colonoscopy. J Gastroenterol Hepatol 2010; 25: 905-912 DOI: 10.1111/j.1440-1746.2010.06275.x. (PMID: 20546444)
- 73 Update on the Paris classification of superficial neoplastic lesions in the digestive tract. Endoscopy 2005; 37: 570-578 DOI: 10.1055/s-2005-861352. (PMID: 15933932)
- 74 Kudo S, Lambert R, Allen JI. et al. Nonpolypoid neoplastic lesions of the colorectal mucosa. Gastrointest Endosc 2008; 68: S3-S47 DOI: 10.1016/j.gie.2008.07.052. (PMID: 18805238)
- 75 Fonolla R, van der Zander QEW, Schreuder RM. et al. Automatic image and text-based description for colorectal polyps using BASIC classification. Artif Intell Med 2021; 121: 102178 DOI: 10.1016/j.artmed.2021.102178. (PMID: 34763800)
- 76 Hassan C, Pickhardt PJ, Rex DK. A resect and discard strategy would improve cost-effectiveness of colorectal cancer screening. Clin Gastroenterol Hepatol 2010; 8: 865-869 DOI: 10.1016/j.cgh.2010.05.018. (PMID: 20621680)
- 77 Kominami Y, Yoshida S, Tanaka S. et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc 2016; 83: 643-649 DOI: 10.1016/j.gie.2015.08.004. (PMID: 26264431)
- 78 Mori Y, Kudo SE, Misawa M. et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med 2018; 169: 357-366
- 79 Barua I, Wieszczy P, Kudo S-E. et al. Real-time artificial intelligence–based optical diagnosis of neoplastic polyps during colonoscopy. NEJM Evidence 2022; 1 DOI: 10.1056/EVIDoa2200003.
- 80 Garcia-Rodriguez A, Tudela Y, Cordova H. et al. In vivo computer-aided diagnosis of colorectal polyps using white light endoscopy. Endosc Int Open 2022; 10: E1201-E1207 DOI: 10.1055/a-1881-3178. (PMID: 36118638)
- 81 Hassan C, Balsamo G, Lorenzetti R. et al. Artificial intelligence allows leaving-in-situ colorectal polyps. Clin Gastroenterol Hepatol 2022; 20: 2505-2513.e4
- 82 Houwen B, Hazewinkel Y, Giotis I. et al. Computer-aided diagnosis for optical diagnosis of diminutive colorectal polyps including sessile serrated lesions: a real-time comparison with screening endoscopists. Endoscopy 2023; DOI: 10.1055/a-2009-3990.
- 83 Minegishi Y, Kudo SE, Miyata Y. et al. Comprehensive diagnostic performance of real-time characterization of colorectal lesions using an artificial intelligence-assisted system: a prospective study. Gastroenterology 2022; 163: 323-325 e323 DOI: 10.1053/j.gastro.2022.03.053. (PMID: 35398043)
- 84 Rondonotti E, Hassan C, Tamanini G. et al. Artificial intelligence-assisted optical diagnosis for the resect-and-discard strategy in clinical practice: the Artificial intelligence BLI Characterization (ABC) study. Endoscopy 2022; DOI: 10.1055/a-1852-0330. (PMID: 35562098)
- 85 Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology 2010; 138: 2088-2100 DOI: 10.1053/j.gastro.2009.12.066. (PMID: 20420948)
- 86 IJspeert JE, Bastiaansen BA, van Leerdam ME. et al. Development and validation of the WASP classification system for optical diagnosis of adenomas, hyperplastic polyps and sessile serrated adenomas/polyps. Gut 2016; 65: 963-970 DOI: 10.1136/gutjnl-2014-308411. (PMID: 25753029)
- 87 Kamitani Y, Nonaka K, Isomoto H. Current status and future perspectives of artificial intelligence in colonoscopy. J Clin Med 2022; 11: 2923 DOI: 10.3390/jcm11102923. (PMID: 35629049)
- 88 Choi K, Choi SJ, Kim ES. Computer-aided diagonosis for colorectal cancer using deep learning with visual explanations. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2020: 1156-1159
- 89 Yang YJ, Cho BJ, Lee MJ. et al. Automated classification of colorectal neoplasms in white-light colonoscopy images via deep learning. J Clin Med 2020; 9: 1593 DOI: 10.3390/jcm9051593. (PMID: 32456309)
- 90 Zorron Cheng Tao Pu L, Maicas G, Tian Y. et al. Computer-aided diagnosis for characterization of colorectal lesions: comprehensive software that includes differentiation of serrated lesions. Gastrointest Endosc 2020; 92: 891-899
- 91 Choi SJ, Kim ES, Choi K. Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms. Sci Rep 2021; 11: 5311 DOI: 10.1038/s41598-021-84299-2. (PMID: 33674628)
- 92 Gong EJ, Bang CS, Lee JJ. et al. No-code platform-based deep-learning models for prediction of colorectal polyp histology from white-light endoscopy images: development and performance verification. J Pers Med 2022; 12: 963 DOI: 10.3390/jpm12060963.
- 93 Meng S, Zheng Y, Wang W. et al. A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia. Dig Liver Dis 2022; 54: 1202-1208
- 94 Gupta N, Bansal A, Rao D. et al. Prevalence of advanced histological features in diminutive and small colon polyps. Gastrointest Endosc 2012; 75: 1022-1030 DOI: 10.1016/j.gie.2012.01.020. (PMID: 22405698)
- 95 Ponugoti PL, Cummings OW, Rex DK. Risk of cancer in small and diminutive colorectal polyps. Dig Liver Dis 2017; 49: 34-37 DOI: 10.1016/j.dld.2016.06.025. (PMID: 27443490)
- 96 Vleugels JLA, Hassan C, Senore C. et al. Diminutive polyps with advanced histologic features do not increase risk for metachronous advanced colon neoplasia. Gastroenterology 2019; 156: 623-634.e623
- 97 Vleugels JLA, Koens L, Dijkgraaf MGW. et al. Suboptimal endoscopic cancer recognition in colorectal lesions in a national bowel screening programme. Gut 2020; 69: 977-980 DOI: 10.1136/gutjnl-2018-316882. (PMID: 31822579)
- 98 Meulen LWT, van de Wetering AJP, Debeuf MPH. et al. Optical diagnosis of T1 CRCs and treatment consequences in the Dutch CRC screening programme. Gut 2020; 69: 2049-2051 DOI: 10.1136/gutjnl-2019-320403. (PMID: 31937551)
- 99 Hayashi N, Tanaka S, Hewett DG. et al. Endoscopic prediction of deep submucosal invasive carcinoma: validation of the narrow-band imaging international colorectal endoscopic (NICE) classification. Gastrointest Endosc 2013; 78: 625-632 DOI: 10.1016/j.gie.2013.04.185. (PMID: 23910062)
- 100 Hosotani K, Imai K, Hotta K. et al. Diagnostic performance for T1 cancer in colorectal lesions ≥10 mm by optical characterization using magnifying narrow-band imaging combined with magnifying chromoendoscopy; implications for optimized stratification by Japan Narrow-band Imaging Expert Team classification. Dig Endosc 2021; 33: 425-432
- 101 Takeda K, Kudo SE, Mori Y. et al. Accuracy of diagnosing invasive colorectal cancer using computer-aided endocytoscopy. Endoscopy 2017; 49: 798-802 DOI: 10.1055/s-0043-105486. (PMID: 28472832)
- 102 Tamai N, Saito Y, Sakamoto T. et al. Effectiveness of computer-aided diagnosis of colorectal lesions using novel software for magnifying narrow-band imaging: a pilot study. Endosc Int Open 2017; 5: E690-E694 DOI: 10.1055/s-0043-105490. (PMID: 28782001)
- 103 Ito N, Kawahira H, Nakashima H. et al. Endoscopic diagnostic support system for cT1b colorectal cancer using deep learning. Oncology 2019; 96: 44-50 DOI: 10.1159/000491636. (PMID: 30130758)
- 104 Lui TKL, Wong KKY, Mak LLY. et al. Endoscopic prediction of deeply submucosal invasive carcinoma with use of artificial intelligence. Endosc Int Open 2019; 7: E514-E520
- 105 Nakajima Y, Zhu X, Nemoto D. et al. Diagnostic performance of artificial intelligence to identify deeply invasive colorectal cancer on non-magnified plain endoscopic images. Endosc Int Open 2020; 8: E1341-E1348 DOI: 10.1055/a-1220-6596. (PMID: 33015336)
- 106 Lu Z, Xu Y, Yao L. et al. Real-time automated diagnosis of colorectal cancer invasion depth using a deep learning model with multimodal data (with video). Gastrointest Endosc 2022; 95: 1186-1194.e3
- 107 Luo X, Wang J, Han Z. et al. Artificial intelligence-enhanced white-light colonoscopy with attention guidance predicts colorectal cancer invasion depth. Gastrointest Endosc 2021; 94: 627-638 e621
- 108 Tokunaga M, Matsumura T, Nankinzan R. et al. Computer-aided diagnosis system using only white-light endoscopy for the prediction of invasion depth in colorectal cancer. Gastrointest Endosc 2021; 93: 647-653 DOI: 10.1016/j.gie.2020.07.053. (PMID: 32735946)
- 109 Moons LMG, Bastiaansen BAJ, Richir MC. et al. Endoscopic intermuscular dissection for deep submucosal invasive cancer in the rectum: a new endoscopic approach. Endoscopy 2022; 54: 993-998 DOI: 10.1055/a-1748-8573. (PMID: 35073588)
- 110 Brand M, Troya J, Krenzer A. et al. Development and evaluation of a deep learning model to improve the usability of polyp detection systems during interventions. United European Gastroenterol J 2022; 10: 477-484
- 111 Kudo SE, Ichimasa K, Villard B. et al. Artificial intelligence system to determine risk of t1 colorectal cancer metastasis to lymph node. Gastroenterology 2021; 160: 1075-1084 e1072 DOI: 10.1053/j.gastro.2020.09.027. (PMID: 32979355)
- 112 Ichimasa K, Kudo SE, Mori Y. et al. Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy 2018; 50: 230-240 DOI: 10.1055/s-0043-122385. (PMID: 29272905)
- 113 Takamaru H, Stammers M, Yanagisawa F. et al. Conditional inference tree models to perceive depth of invasion in T1 colorectal cancer. Surg Endosc 2022; 36: 9234-9243 DOI: 10.1007/s00464-022-09414-4. (PMID: 35915186)
- 114 Mori Y, Kudo SE, East JE. et al. Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: an add-on analysis of a clinical trial (with video). Gastrointest Endosc 2020; 92: 905-911 e901
- 115 Wadhwa V, Alagappan M, Gonzalez A. et al. Physician sentiment toward artificial intelligence (AI) in colonoscopic practice: a survey of US gastroenterologists. Endosc Int Open 2020; 8: E1379-E1384 DOI: 10.1055/a-1223-1926. (PMID: 33015341)