Ultraschall Med 2023; 44(05): 468-486
DOI: 10.1055/a-2103-4981
Continuing Medical Education

Ultrasound assessment of brain supplying arteries (transcranial)

Artikel in mehreren Sprachen: English | deutsch
1   Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
,
2   Neurology, Private Practice Villa Pfahler, St. Ingbert, Germany
3   Neurology, RWTH University Hospital, Aachen, Germany
,
4   Neurology, University Medicine, Greifswald, Germany
,
5   Clinic for internal medicine, diabetology and angiology, Agaplesion Diakonie Clinics, Kassel, Germany
6   Clinic for Cardiology and Angiology, University Hospital Giessen-Marburg, Marburg, Germany
,
7   Neurology, Asklepios Neurologic Clinic Bad Salzhausen, Nidda, Germany
› Institutsangaben

Abstract

Ultrasonography of intracranial arteries is a non-invasive and highly efficient method for the diagnosis and follow-up of patients with cerebrovascular diseases, also in the bedside setting of the critically ill. For reliable assessment and interpretation of sonographic findings, the technique requires – apart from dedicated anatomic and pathophysiological knowledge of cerebral arteries and their hemodynamics – the comprehension of alternative imaging modalities such as CT or MR angiography. This article reviews the transcranial color-coded duplex sonographic (TCCS) examination technique including the transcranial Doppler sonography (TCD) for a standardized ultrasound assessment of the intracranial arteries and typical pathological cases. As a complementary tool, transorbital ultrasound for the assessment of the optic nerve sheath diameter and adjacent structures is also described in this article.



Publikationsverlauf

Eingereicht: 09. Februar 2023

Angenommen: 30. Mai 2023

Artikel online veröffentlicht:
13. Oktober 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Gröschel K, Harrer J, Schminke UU. et al. Ultrasound assessment of brain supplying arteries (extracranial). Ultraschall in Med 2023;
  • 2 Widder B, Hamann G. Duplexsonographie der hirnversorgenden Arterien. 7. Auflage.. Deutschland: Springer-Verlag GmbH; 2018.
  • 3 DEGUM. Recommendations for documentation of neurosonographic examinations. 2023 Im Internet (Stand: 02.05.2023): https://www.degum.de/fileadmin/dokumente/sektionen/neurologie/richtlinien/DokuEmpfehlungen_Englisch_korrigiert.pdf
  • 4 Valdueza JM, Schreiber S, Röhl JE. et al. Neurosonology and Neuroimaging of Stroke: A Comprehensive Reference. Georg Thieme Verlag KG; 2016.
  • 5 Csiba L, Baracchini C. Manual of Neurosonology. Cambridge University Press; 2016.
  • 6 Hirzallah MI, Lochner P, Hafeez MU. et al. Quality assessment of optic nerve sheath diameter ultrasonography: Scoping literature review and Delphi protocol. J Neuroimaging 2022;
  • 7 Ertl M, Barinka F, Torka E. et al. Ocular color-coded sonography – a promising tool for neurologists and intensive care physicians. Ultraschall in Med 2014; 35: 422-431
  • 8 Czihal M, Lottspeich C, Kohler A. et al. Transocular sonography in acute arterial occlusions of the eye in elderly patients: Diagnostic value of the spot sign. PLoS One 2021; 16: e0247072
  • 9 Nedelmann M, Graef M, Weinand F. et al. Retrobulbar Spot Sign Predicts Thrombolytic Treatment Effects and Etiology in Central Retinal Artery Occlusion. Stroke 2015; 46: 2322-2324
  • 10 Droste DW. Clinical utility of contrast-enhanced ultrasound in neurosonology. Eur Neurol 2008; 59 (Suppl. 01) 2-8
  • 11 Krejza J, Mariak Z, Babikian VL. Importance of angle correction in the measurement of blood flow velocity with transcranial Doppler sonography. AJNR Am J Neuroradiol 2001; 22: 1743-1747
  • 12 Nedelmann M, Stolz E, Gerriets T. et al. Consensus recommendations for transcranial color-coded duplex sonography for the assessment of intracranial arteries in clinical trials on acute stroke. Stroke 2009; 40: 3238-3244
  • 13 Baumgartner RW, Mattle HP, Schroth G. Assessment of >/= 50 % and < 50 % intracranial stenoses by transcranial color-coded duplex sonography. Stroke 1999; 30: 87-92
  • 14 Lindegaard KF, Nornes H, Bakke SJ. et al. Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir (Wien) 1989; 100: 12-24
  • 15 Sharma S, Lubrica RJ, Song M. et al. The Role of Transcranial Doppler in Cerebral Vasospasm: A Literature Review. Acta Neurochir Suppl 2020; 127: 201-205
  • 16 van Mook WN, Rennenberg RJ, Schurink GW. et al. Cerebral hyperperfusion syndrome. Lancet Neurol 2005; 4: 877-888
  • 17 Pade O, Eggers J, Schreiber SJ. et al. Complete basilar artery assessment by transcranial color-coded duplex sonography using the combined transforaminal and transtemporal approach. Ultraschall in Med 2011; 32 (Suppl. 02) E63-E68
  • 18 Jauss M, Zanette E. Detection of right-to-left shunt with ultrasound contrast agent and transcranial Doppler sonography. Cerebrovasc Dis 2000; 10: 490-496
  • 19 Zetola VF, Lange MC, Scavasine VC. et al. Latin American Consensus Statement for the Use of Contrast-Enhanced Transcranial Ultrasound as a Diagnostic Test for Detection of Right-to-Left Shunt. Cerebrovasc Dis 2019; 48: 99-108
  • 20 Markus HS, King A, Shipley M. et al. Asymptomatic embolisation for prediction of stroke in the Asymptomatic Carotid Emboli Study (ACES): a prospective observational study. Lancet Neurol 2010; 9: 663-671
  • 21 Moehring MA, Spencer MP. Power M-mode Doppler (PMD) for observing cerebral blood flow and tracking emboli. Ultrasound Med Biol 2002; 28: 49-57
  • 22 Reinhard M, Schwarzer G, Briel M. et al. Cerebrovascular reactivity predicts stroke in high-grade carotid artery disease. Neurology 2014; 83: 1424-1431
  • 23 Walter U, Schreiber SJ, Kaps M. Doppler and Duplex Sonography for the Diagnosis of the Irreversible Cessation of Brain Function (“Brain Death“): Current Guidelines in Germany and Neighboring Countries. Ultraschall in Med 2016; 37: 558-578