Subscribe to RSS
DOI: 10.1055/a-2105-0756
Einflussnahme des Diabetes mellitus auf glaukomrelevante Untersuchungsergebnisse beim primären Offenwinkelglaukom
Article in several languages: deutsch | EnglishZusammenfassung
Das primäre Offenwinkelglaukom (POWG) wird nicht mehr als eine isolierte augendruckabhängige Optikusneuropathie, sondern als eine neurodegenerative Erkrankung angesehen, bei der der oxidative Stress und die Neuroinflammation im Vordergrund stehen. Diese Prozesse können durch zusätzlich vorliegende Systemerkrankungen verstärkt werden. Am häufigsten kommen eine arterielle Hypertonie, Dyslipidämien und ein Diabetes mellitus vor. Anhand des Diabetes mellitus soll gezeigt werden, wie weitreichend eine derartige Systemerkrankung sowohl auf die funktionellen als auch auf die strukturellen diagnostischen Methoden für das POWG einen Einfluss nehmen kann. Diese Kenntnisse sind essenziell, da durch diese Interferenzen Fehlinterpretationen zum POWG denkbar sind, die auch Therapieentscheidungen betreffen können.
Schlüsselwörter
Glaukom - Diabetes - funktionelle Diagnostik - strukturelle Diagnostik - Perimetrie - optische KohärenztomografiePublication History
Received: 18 December 2022
Accepted: 25 May 2023
Article published online:
29 August 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur/References
- 1 Jassim AH, Inman DM, Mitchell CH. Crosstalk Between Dysfunctional Mitochondria and Inflammation in Glaucomatous Neurodegeneration. Front Pharmacol 2021; 12: 699623
- 2 Duarte JN. Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in Glaucoma. J Ophthalmol 2021; 2021: 4581909
- 3 Sabel BA, Lehnigk L. Is Mental Stress the Primary Cause of Glaucoma?. Klin Monbl Augenheilkd 2021; 238: 132-145
- 4 Chan JW, Chan NCY, Sadun AA. Glaucoma as Neurodegeneration in the Brain. Eye Brain 2021; 13: 21-28
- 5 Li W, Pan J, Wei M. et al. Nonocular Influencing Factors for Primary Glaucoma: An Umbrella Review of Meta-Analysis. Ophthalmic Res 2021; 64: 938-950
- 6 Schuster AK, Erb C, Hoffmann EM. et al. The Diagnosis and Treatment of Glaucoma. Dtsch Arztebl Int 2020; 117: 225-234
- 7 Zhao YX, Chen XW. Diabetes and risk of glaucoma: systematic review and a Meta-analysis of prospective cohort studies. Int J Ophthalmol 2017; 10: 1430-1435
- 8 Xue Z, Yuan J, Chen F. et al. Genome-wide association meta-analysis of 88,250 individuals highlights pleiotropic mechanisms of five ocular diseases in UK Biobank. EBioMedicine 2022; 82: 104161
- 9 Erb C, Gast U, Schremmer D. German register for glaucoma patients with dry eye. I. Basic outcome with respect to dry eye. Graefes Arch Clin Exp Ophthalmol 2008; 246: 1593-1601
- 10 Lin HC, Chien CW, Hu CC. et al. Comparison of comorbid conditions between open-angle glaucoma patients and a control cohort: a case-control study. Ophthalmology 2010; 117: 2088-2095
- 11 Hacke C, Erb C, Weisser B. Risikofaktoren und Zielwerte in der kardiovaskulären Primär- und Sekundärprävention: Bedeutung für das Glaukom. Klin Monbl Augenheilkd 2018; 235: 151-156
- 12 Wisse RP, Peeters N, Imhof SM. et al. Comparison of Diaton transpalpebral tonometer with applanation tonometry in keratoconus. Int J Ophthalmol 2016; 9: 395-398
- 13 Choritz L, Mansouri K, van den Bosch J. et al. Telemetric Measurement of Intraocular Pressure via an Implantable Pressure Sensor-12-Month Results from the ARGOS-02 Trial. Am J Ophthalmol 2020; 209: 187-196
- 14 Gordon MO, Kass MA. What We Have Learned From the Ocular Hypertension Treatment Study. Am J Ophthalmol 2018; 189: xxiv-xxvii
- 15 Kohlhaas M, Spörl E, Böhm AG. et al. Applanationstonometrie bei Normalpatienten und Patienten nach LASIK. Klin Monbl Augenheilkd 2005; 222: 823-826
- 16 Harper CL, Boulton ME, Bennett D. et al. Diurnal variations in human corneal thickness. Br J Ophthalmol 1996; 80: 1068-1072
- 17 Zimmermann N, Brandt S, Brünner J. et al. Klinische Untersuchung zur Veränderung der kornealen Biomechanik bei Patienten mit systemischer Sklerodermie. Klin Monbl Augenheilkd 2019; 236: 806-815
- 18 Demirci S, Gunes A, Koyuncuoglu HR. et al. Evaluation of corneal parameters in patients with Parkinsonʼs disease. Neurol Sci 2016; 37: 1247-1252
- 19 Ang GS, Nicholas S, Wells AP. Poor utility of intraocular pressure correction formulae in individual glaucoma and glaucoma suspect patients. Clin Exp Ophthalmol 2011; 39: 111-118
- 20 Park SJ, Ang GS, Nicholas S. et al. The effect of thin, thick, and normal corneas on Goldmann intraocular pressure measurements and correction formulae in individual eyes. Ophthalmology 2012; 119: 443-449
- 21 Hoffmann EM, Prokosch-Willing V. Primary Open Angle Glaucoma. Klin Monbl Augenheilkd 2017; 234: 1407-1422
- 22 Gaspar R, Pinto LA, Sousa DC. Corneal properties and glaucoma: a review of the literature and meta-analysis. Arq Bras Oftalmol 2017; 80: 202-206
- 23 Viswanathan D, Goldberg I, Graham SL. Relationship of change in central corneal thickness to visual field progression in eyes with glaucoma. Graefes Arch Clin Exp Ophthalmol 2013; 251: 1593-1599
- 24 Susanna BN, Ogata NG, Jammal AA. et al. Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure. Ophthalmology 2019; 126: 1640-1646
- 25 Kumar N, Pop-Busui R, Musch DC. et al. Central Corneal Thickness Increase Due to Stromal Thickening With Diabetic Peripheral Neuropathy Severity. Cornea 2018; 37: 1138-1142
- 26 Ljubimov AV. Diabetic complications in the cornea. Vision Res 2017; 139: 138-152
- 27 Del Buey MA, Casas P, Caramello C. et al. An Update on Corneal Biomechanics and Architecture in Diabetes. J Ophthalmol 2019; 2019: 7645352
- 28 Coudrillier B, Pijanka J, Jefferys J. et al. Effects of age and diabetes on scleral stiffness. J Biomech Eng 2015; 137: 0710071-07100710
- 29 Sayah DN, Mazzaferri J, Descovich D. et al. The Association Between Ocular Rigidity and Neuroretinal Damage in Glaucoma. Invest Ophthalmol Vis Sci 2020; 61: 1-9
- 30 Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy. Neural Regen Res 2023; 18: 976-982
- 31 Carrella S, Massa F, Indrieri A. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol 2021; 9: 653522
- 32 Carpi-Santos R, de Melo Reis RA, Gomes FCA. et al. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11: 617
- 33 Altmann C, Schmidt MHH. The Role of Microglia in Diabetic Retinopathy: Inflammation, Microvasculature Defects and Neurodegeneration. Int J Mol Sci 2018; 19: 110
- 34 Zhao X, Sun R, Luo X. et al. The Interaction Between Microglia and Macroglia in Glaucoma. Front Neurosci 2021; 15: 610788
- 35 Wang Y, Fung NSK, Lam WC. et al. mTOR Signalling Pathway: A Potential Therapeutic Target for Ocular Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11: 1304
- 36 Yao A, van Wijngaarden P. Metabolic pathways in context: mTOR signalling in the retina and optic nerve – A review. Clin Exp Ophthalmol 2020; 48: 1072-1084
- 37 Hamilton NB, Attwell D, Hall CN. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2010; 2: 5
- 38 Kovacs-Oller T, Ivanova E, Bianchimano P. et al. The pericyte connectome: spatial precision of neurovascular coupling is driven by selective connectivity maps of pericytes and endothelial cells and is disrupted in diabetes. Cell Discov 2020; 6: 39
- 39 Ji L, Tian H, Webster KA. et al. Neurovascular regulation in diabetic retinopathy and emerging therapies. Cell Mol Life Sci 2021; 78: 5977-5985
- 40 Fragiotta S, Pinazo-Durán MD, Scuderi G. Understanding Neurodegeneration from a Clinical and Therapeutic Perspective in Early Diabetic Retinopathy. Nutrients 2022; 14: 792
- 41 Terai N, Raiskup F, Haustein M. et al. Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res 2012; 37: 553-562
- 42 Zimprich L, Diedrich J, Bleeker A. et al. Corneal Hysteresis as a Biomarker of Glaucoma: Current Insights. Clin Ophthalmol 2020; 14: 2255-2264
- 43 Murtagh P, OʼBrien C. Corneal Hysteresis, Intraocular Pressure, and Progression of Glaucoma: Time for a “Hyst-Oric” Change in Clinical Practice?. J Clin Med 2022; 11: 2895
- 44 Wells AP, Garway-Heath DF, Poostchi A. et al. Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci 2008; 49: 3262-3268
- 45 Wang X, Xu G, Wang W. et al. Changes in corneal biomechanics in patients with diabetes mellitus: a systematic review and meta-analysis. Acta Diabetol 2020; 57: 973-981
- 46 Pillunat KR, Herber R, Pillunat LE. Corneal Biomechanics in Glaucoma. Klin Monbl Augenheilkd 2022; 239: 158-164
- 47 Pillunat KR, Herber R, Spoerl E. et al. A new biomechanical glaucoma factor to discriminate normal eyes from normal pressure glaucoma eyes. Acta Ophthalmol 2019; 97: E962-E967
- 48 Jung Y, Chun H, Moon JI. Corneal deflection amplitude and visual field progression in primary open-angle glaucoma. PLoS One 2019; 14: e0220655
- 49 Ohn K, Noh YH, Moon JI. et al. Measurement of corneal biomechanical properties in diabetes mellitus using the Corvis ST. Medicine (Baltimore) 2022; 101: e30248
- 50 Yaqoob Z, Wu J, Yang C. Spectral domain optical coherence tomography: a better OCT imaging strategy. Biotechniques 2005; 39(6 Suppl): S6-S13
- 51 Yuksel Elgin C, Chen D, Al-Aswad LA. Ophthalmic imaging for the diagnosis and monitoring of glaucoma: A review. Clin Exp Ophthalmol 2022; 50: 183-197
- 52 Tang Z, Chan MY, Leung WY. et al. Assessment of retinal neurodegeneration with spectral-domain optical coherence tomography: a systematic review and meta-analysis. Eye (Lond) 2021; 35: 1317-1325
- 53 Chen X, Nie C, Gong Y. et al. Peripapillary retinal nerve fiber layer changes in preclinical diabetic retinopathy: a meta-analysis. PLoS One 2015; 10: e0125919
- 54 Chai Q, Yao Y, Guo C. et al. Structural and functional retinal changes in patients with type 2 diabetes without diabetic retinopathy. Ann Med 2022; 54: 1816-1825
- 55 Miguel A, Silva A, Barbosa-Breda J. et al. OCT-angiography detects longitudinal microvascular changes in glaucoma: a systematic review. Br J Ophthalmol 2022; 106: 667-675
- 56 Fan X, Ying Y, Zhai R. et al. The characteristics of fundus microvascular alterations in the course of glaucoma: a narrative review. Ann Transl Med 2022; 10: 527
- 57 Aghsaei Fard M, Ritch R. Optical coherence tomography angiography in glaucoma. Ann Transl Med 2020; 8: 1204
- 58 Yang JY, Wang Q, Yan YN. et al. Microvascular retinal changes in pre-clinical diabetic retinopathy as detected by optical coherence tomographic angiography. Graefes Arch Clin Exp Ophthalmol 2020; 258: 513-520
- 59 Han Y, Wang X, Sun G. et al. Quantitative Evaluation of Retinal Microvascular Abnormalities in Patients With Type 2 Diabetes Mellitus Without Clinical Sign of Diabetic Retinopathy. Transl Vis Sci Technol 2022; 11: 20
- 60 Ciprés M, Satue M, Melchor I. et al. Retinal neurodegeneration in patients with type 2 diabetes mellitus without diabetic retinopathy. Arch Soc Esp Oftalmol (Engl Ed) 2022; 97: 205-218
- 61 Johannesen SK, Viken JN, Vergmann AS. et al. Optical coherence tomography angiography and microvascular changes in diabetic retinopathy: a systematic review. Acta Ophthalmol 2019; 97: 7-14
- 62 Kuerten D, Kotliar K, Fuest M. et al. Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study. Int Ophthalmol 2021; 41: 3109-3119
- 63 Waldmann NP, Kochkorov A, Polunina A. et al. The prognostic value of retinal vessel analysis in primary open-angle glaucoma. Acta Ophthalmol 2016; 94: e474-e480
- 64 Garhöfer G, Zawinka C, Resch H. et al. Response of retinal vessel diameters to flicker stimulation in patients with early open angle glaucoma. J Glaucoma 2004; 13: 340-344
- 65 Gugleta K, Waldmann N, Polunina A. et al. Retinal neurovascular coupling in patients with glaucoma and ocular hypertension and its association with the level of glaucomatous damage. Graefes Arch Clin Exp Ophthalmol 2013; 251: 1577-1585
- 66 Selbach MJ, Schallenberg M, Kramer S. et al. Trabeculectomy Improves Vessel Response Measured by Dynamic Vessel Analysis (DVA) in Glaucoma Patients. Open Ophthalmol J 2014; 8: 75-81
- 67 Lim M, Sasongko MB, Ikram MK. et al. Systemic associations of dynamic retinal vessel analysis: a review of current literature. Microcirculation 2013; 20: 257-268
- 68 Garhöfer G, Chua J, Tan B. et al. Retinal Neurovascular Coupling in Diabetes. J Clin Med 2020; 9: 2829
- 69 Garhöfer G, Zawinka C, Resch H. et al. Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes. Br J Ophthalmol 2004; 88: 887-891
- 70 Mandecka A, Dawczynski J, Blum M. et al. Influence of flickering light on the retinal vessels in diabetic patients. Diabetes Care 2007; 30: 3048-3052
- 71 Lott ME, Slocomb JE, Shivkumar V. et al. Impaired retinal vasodilator responses in prediabetes and type 2 diabetes. Acta Ophthalmol 2013; 91: e462-e469
- 72 Gegenfurtner KR, Walter S, Braun DI. Visuelle Informationsverarbeitung im Gehirn. In: Huber HD, Lockermann B, Scheibel M. Hrsg. Bild | Medien | Wissen. Visuelle Kompetenz im Medienzeitalter. München: Kopaed; 2002
- 73 Muriach M, Flores-Bellver M, Romero FJ. et al. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev 2014; 2014: 102158
- 74 Lämmer R, Huchzermeyer C. Perimetrie in der Glaukomdiagnostik. Klin Monbl Augenheilkd 2021; DOI: 10.1055/a-1351-9080.
- 75 Medeiros FA, Lisboa R, Weinreb RN. et al. Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. Ophthalmology 2013; 120: 736-744
- 76 Pahor D. Automated static perimetry as a screening method for evaluation of retinal perfusion in diabetic retinopathy. Int Ophthalmol 1997; 21: 305-309
- 77 Bengtsson B, Heijl A, Agardh E. Visual fields correlate better than visual acuity to severity of diabetic retinopathy. Diabetologia 2005; 48: 2494-2500
- 78 Shimura M, Yasuda K, Nakazawa T. et al. Visual dysfunction after panretinal photocoagulation in patients with severe diabetic retinopathy and good vision. Am J Ophthalmol 2005; 140: 8-15
- 79 Çeliker H, Erdağı Bulut A, Şahin Ö. Comparison of Efficacy and Side Effects of Multispot Lasers and Conventional Lasers for Diabetic Retinopathy Treatment. Turk J Ophthalmol 2017; 47: 34-41
- 80 Erb C, Göbel K. Funktionelle Glaukomdiagnostik. Ophthalmologe 2009; 106: 375-385
- 81 Lamparter J, Schulze A, Hoffmann EM. Frequenzverdopplungsperimetrie: Neue Methode zur Untersuchung glaukomatöser Gesichtsfeldausfälle. Ophthalmologe 2009; 106: 709-713
- 82 Bayer AU, Erb C. Short wavelength automated perimetry, frequency doubling technology perimetry, and pattern electroretinography for prediction of progressive glaucomatous standard visual field defects. Ophthalmology 2002; 109: 1009-1017
- 83 Lee MJ, Kim DM, Jeoung JW. et al. Localized retinal nerve fiber layer defects and visual field abnormalities by Humphrey matrix frequency doubling technology perimetry. Am J Ophthalmol 2007; 143: 1056-1058
- 84 Fan X, Wu LL, Xiao GG. et al. The 8-year follow-up study for clinical diagnostic potentials of frequency-doubling technology perimetry for perimetrically normal eyes of open-angle glaucoma patients with unilateral visual field loss. Zhonghua Yan Ke Za Zhi 2018; 54: 177-183
- 85 Hu R, Wang C, Racette L. Comparison of matrix frequency-doubling technology perimetry and standard automated perimetry in monitoring the development of visual field defects for glaucoma suspect eyes. PLoS One 2017; 12: e0178079
- 86 Kim SA, Park CK, Park HL. Comparison between frequency-doubling technology perimetry and standard automated perimetry in early glaucoma. Sci Rep 2022; 12: 10173
- 87 Terauchi R, Wada T, Ogawa S. et al. FDT Perimetry for Glaucoma Detection in Comprehensive Health Checkup Service. J Ophthalmol 2020; 2020: 4687398
- 88 Meira-Freitas D, Tatham AJ, Lisboa R. et al. Predicting progression of glaucoma from rates of frequency doubling technology perimetry change. Ophthalmology 2014; 121: 498-507
- 89 Liu S, Yu M, Weinreb RN. et al. Frequency doubling technology perimetry for detection of visual field progression in glaucoma: a pointwise linear regression analysis. Invest Ophthalmol Vis Sci 2014; 55: 2862-2869
- 90 Iwase A, Tsutsumi T, Fujii M. et al. Risk factors for glaucoma are reflected in abnormal responses to frequency-doubling technology screening in both normal and glaucoma eyes. Sci Rep 2022; 12: 11705
- 91 Kanadani FN, Mello PA, Dorairaj SK. et al. Frequency-doubling technology perimetry and multifocal visual evoked potential in glaucoma, suspected glaucoma, and control patients. Clin Ophthalmol 2014; 8: 1323-1330
- 92 Aykan U, Akdemir MO, Yildirim O. et al. Screening for Patients with Mild Alzheimer Disease Using Frequency Doubling Technology Perimetry. Neuroophthalmology 2013; 37: 239-246
- 93 Valenti DA. Alzheimerʼs disease: screening biomarkers using frequency doubling technology visual field. ISRN Neurol 2013; 2013: 989583
- 94 Merle H, Olindo S, Donnio A. et al. Anatomic and functional correlation of frequency-doubling technology perimetry (FDTP) in multiple sclerosis. Int Ophthalmol 2011; 31: 263-270
- 95 Realini T, Lai MQ, Barber L. Impact of diabetes on glaucoma screening using frequency-doubling perimetry. Ophthalmology 2004; 111: 2133-2136
- 96 Montesano G, Ometto G, Higgins BE. et al. Evidence for Structural and Functional Damage of the Inner Retina in Diabetes With No Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2021; 62: 35
- 97 Bao YK, Yan Y, Gordon M. et al. Visual Field Loss in Patients With Diabetes in the Absence of Clinically-Detectable Vascular Retinopathy in a Nationally Representative Survey. Invest Ophthalmol Vis Sci 2019; 60: 4711-4716
- 98 Joltikov KA, de Castro VM, Davila JR. et al. Multidimensional functional and structural evaluation reveals neuroretinal impairment in early diabetic retinopathy. Invest Ophthalmol Vis Sci 2017; 58: BIO277-BIO290
- 99 Hofmann L, Palczewski K. Advances in understanding the molecular basis of the first steps in color vision. Prog Retin Eye Res 2015; 49: 46-66
- 100 Conway BR. Color vision, cones, and color-coding in the cortex. Neuroscientist 2009; 15: 274-290
- 101 Pacheco-Cutillas M, Edgar DF, Sahraie A. Acquired colour vision defects in glaucoma-their detection and clinical significance. Br J Ophthalmol 1999; 83: 1396-1402
- 102 Bayer L, Funk J, Töteberg-Harms M. Incidence of dyschromatopsy in glaucoma. Int Ophthalmol 2020; 40: 597-605
- 103 Drance SM, Lakowski R, Schulzer M. et al. Acquired color vision changes in glaucoma. Use of 100-hue test and Pickford anomaloscope as predictors of glaucomatous field change. Arch Ophthalmol 1981; 99: 829-831
- 104 Papaconstantinou D, Georgalas I, Kalantzis G. et al. Acquired color vision and visual field defects in patients with ocular hypertension and early glaucoma. Clin Ophthalmol 2009; 3: 251-257
- 105 Chen XD, Gardner TW. A critical review: Psychophysical assessments of diabetic retinopathy. Surv Ophthalmol 2021; 66: 213-230
- 106 Safi H, Safi S, Hafezi-Moghadam A. et al. Early detection of diabetic retinopathy. Surv Ophthalmol 2018; 63: 601-608
- 107 Richman J, Spaeth GL, Wirostko B. Contrast sensitivity basics and a critique of currently available tests. J Cataract Refract Surg 2013; 39: 1100-1106
- 108 Ichhpujani P, Thakur S, Spaeth GL. Contrast Sensitivity and Glaucoma. J Glaucoma 2020; 29: 71-75
- 109 Wen Y, Chen Z, Zuo C. et al. Low-Contrast High-Pass Visual Acuity Might Help to Detect Glaucoma Damage: A Structure-Function Analysis. Front Med (Lausanne) 2021; 8: 680823
- 110 Silva-Viguera MC, García-Romera MC, López-Izquierdo I. et al. Contrast Sensitivity Assessment in Early Diagnosis of Diabetic Retinopathy: A Systematic Review. Semin Ophthalmol 2023; 38: 319-332
- 111 Chande PK, Raman R, John P. et al. Contrast-Sensitivity Function and Photo Stress-Recovery Time in Prediabetes. Clin Optom (Auckl) 2020; 12: 151-155
- 112 Bode SF, Jehle T, Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest Ophthalmol Vis Sci 2011; 52: 4300-4306
- 113 Bayer AU, Maag KP, Erb C. Detection of optic neuropathy in glaucomatous eyes with normal standard visual fields using a test battery of short-wavelength automated perimetry and pattern electroretinography. Ophthalmology 2002; 109: 1350-1361
- 114 Cvenkel B, Sustar M, Perovšek D. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral-domain optical coherence tomography. Doc Ophthalmol 2017; 135: 17-28
- 115 Mohammed MA, Lolah MM, Doheim MF. et al. Functional assessment of early retinal changes in diabetic patients without clinical retinopathy using multifocal electroretinogram. BMC Ophthalmol 2020; 20: 411
- 116 McAnany JJ, Persidina OS, Park JC. Clinical electroretinography in diabetic retinopathy: a review. Surv Ophthalmol 2022; 67: 712-722
- 117 Touyz RM, Rios FJ, Alves-Lopes R. et al. Oxidative Stress: A Unifying Paradigm in Hypertension. Can J Cardiol 2020; 36: 659-670
- 118 Arnaud C, Bochaton T, Pépin JL. et al. Obstructive sleep apnoea and cardiovascular consequences: Pathophysiological mechanisms. Arch Cardiovasc Dis 2020; 113: 350-358
- 119 Miller YI, Shyy JY. Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation. Trends Endocrinol Metab 2017; 28: 143-152
- 120 Sun Y, Rawish E, Nording HM. et al. Inflammation in Metabolic and Cardiovascular Disorders-Role of Oxidative Stress. Life (Basel) 2021; 11: 672
- 121 Burgos-Morón E, Abad-Jiménez Z, Marañón AM. et al. Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J Clin Med 2019; 8: 1385
- 122 World Health Organization (WHO). Medication without Harm. 2017. Accessed June 27, 2023 at: https://www.who.int/initiatives/medication-without-harm
- 123 Moßhammer D, Haumann H, Mörike K. et al. Polypharmacy–an upward trend with unpredictable effects. Dtsch Arztebl Int 2016; 113: 627-633