Subscribe to RSS
DOI: 10.1055/a-2106-1799
Transition-Metal-Free Insertion of Diazo Compounds, N-Arylsulfonylhydrazones or Ylides into Organoboronic Acids or Their Derivatives
The project is supported by the Natural Science Foundation of China (21871010) and the Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK, the Innovation and Technology Commission (ITC), Government of the Hong Kong Special Administrative Region (HKSAR).
Abstract
Insertion reactions of carbenes or ylides with organoboronic acids or their derivatives have emerged as valuable methods for coupling or homologation of organoboron compounds under metal-free conditions. The crucial steps of these reactions are coordination of the electron-rich carbon centers of the carbene precursors or ylides to the electron-poor boron center, followed by 1,2-migration of the corresponding tetracoordinated boron intermediates. This type of unique transformation provides an efficient method for the construction of C–C or C–X (X = H, B) bonds. Moreover, the C–B bonds generated by such transformations can be utilized as a handle for further derivatization or iterative homologations. In this Account, we summarize the developments in this arena according to the reactive diazo compound, N-arylsulfonylhydrazone or ylide species involved.
1 Introduction
2 Reactions with Diazo Compounds
3 Reactions with N-Arylsulfonylhydrazones
4 Reactions with Ylides
5 Conclusion
Publication History
Received: 16 May 2023
Accepted after revision: 05 June 2023
Accepted Manuscript online:
05 June 2023
Article published online:
09 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Namirembe S, Morken JP. Chem. Soc. Rev. 2019; 48: 3464
- 1b Yang K, Song Q. Acc. Chem. Res. 2021; 54: 2298
- 2a Sivaev IB, Bregadze VI. Coord. Chem. Rev. 2014; 270-271: 75
- 2b Mayer RJ, Hampel N, Ofial AR. Chem. Eur. J. 2021; 27: 4070
- 3 Brown HC, Rao BC. S. J. Am. Chem. Soc. 1956; 78: 5694
- 4 Hillman ME. D. J. Am. Chem. Soc. 1962; 84: 4715
- 5 Wang H, Jing C, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2020; 59: 16859
- 6 Matteson DS, Mah RW. H. J. Am. Chem. Soc. 1963; 85: 2599
- 7 Matteson DS, Ray R. J. Am. Chem. Soc. 1980; 102: 7590
- 8 Leonori D, Aggarwal VK. Acc. Chem. Res. 2014; 47: 3174
- 9 Li H, Zhang Y, Wang J. Synthesis 2013; 45: 3090
- 10a Doyle MP, McKervey MA, Ye T. In Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides. John Wiley & Sons; New York: 1998
- 10b Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
- 10c Qiu D, Wang J. In Recent Developments of Diazo Compounds in Organic Synthesis . World Scientific Publishing Europe Ltd; London: 2021
- 11 Hooz J, Linke S. J. Am. Chem. Soc. 1968; 90: 5936
- 12a Hooz J, Linke S. J. Am. Chem. Soc. 1968; 90: 6891
- 12b Hooz J, Oudenes J, Roberts JL, Benderly A. J. Org. Chem. 1987; 52: 1347
- 12c Hooz J, Gunn DM. Tetrahedron Lett. 1969; 10: 3455
- 12d Brown HC, Midland MM, Levy AB. J. Am. Chem. Soc. 1972; 94: 3662
- 12e Brown HC, Midland MM, Levy AB. J. Am. Chem. Soc. 1972; 94: 2114
- 12f Hooz J, Bridson JN, Calzada JG, Brown HC, Midland MM, Levy AB. J. Org. Chem. 1973; 38: 2574
- 12g Brown HC, Ravindran N. J. Am. Chem. Soc. 1973; 95: 2396
- 13a Mukaiyama T, Inomata K, Muraki M. J. Am. Chem. Soc. 1973; 95: 967
- 13b Sanchez-Carmona MA, Contreras-Cruz DA, Miranda LD. Org. Biomol. Chem. 2011; 9: 6506
- 13c Lübcke M, Bezhan D, Szabó KJ. Chem. Sci. 2019; 10: 5990
- 13d Xiao Y, Zhou Q, Fu Z, Yu L, Wang J. Macromolecules 2022; 55: 2424
- 14 Peng C, Zhang W, Yan G, Wang J. Org. Lett. 2009; 11: 1667
- 15 Wu G, Deng Y, Wu C, Wang X, Zhang Y, Wang J. Eur. J. Org. Chem. 2014; 4477
- 16 Argintaru OA, Ryu D, Aron I, Molander GA. Angew. Chem. Int. Ed. 2013; 52: 13656
- 17 Molander GA, Ryu D. Angew. Chem. Int. Ed. 2014; 53: 14181
- 18 Wu C, Bao Z, Xu X, Wang J. Org. Biomol. Chem. 2019; 17: 5714
- 19 Wu C, Wu G, Zhang Y, Wang J. Org. Chem. Front. 2016; 3: 817
- 20 Poh J.-S, Lau S.-H, Dykes IG, Tran DN, Battilocchio C, Ley SV. Chem. Sci. 2016; 7: 6803
- 21 Bomio C, Kabeshov MA, Lit AR, Lau SH, Ehlert J, Battilocchio C, Ley SV. Chem. Sci. 2017; 8: 6071
- 22 Goddard J.-P, Le Gall T, Mioskowski C. Org. Lett. 2000; 2: 1455
- 23 Wu K, Wu L.-L, Zhou C.-Y, Che C.-M. Angew. Chem. Int. Ed. 2020; 59: 16202
- 24 Elkin PK, Levin VV, Dilman AD, Struchkova MI, Belyakov PA, Arkhipov DE, Korlyukov AA, Tartakovsky VA. Tetrahedron Lett. 2011; 52: 5259
- 25a Matteson DS. Chem. Rev. 1989; 89: 1535
- 25b Thomas SP, French RM, Jheengut V, Aggarwal VK. Chem. Rec. 2009; 9: 24
- 26a Jonker SJ. T, Jayarajan R, Kireilis T, Deliaval M, Eriksson L, Szabó KJ. J. Am. Chem. Soc. 2020; 142: 21254
- 26b Jayarajan R, Kireilis T, Eriksson L, Szabó KJ. Chem. Eur. J. 2022; 28: e202202059
- 27 Deliaval M, Jayarajan R, Eriksson L, Szabó KJ. J. Am. Chem. Soc. 2023; 145: 10001
- 28a Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
- 28b Xia Y, Wang J. J. Am. Chem. Soc. 2020; 142: 10592
- 29 Barluenga J, Tomás-Gamasa M, Aznar F, Valdés C. Nat. Chem. 2009; 1: 494
- 30a Li X, Feng Y, Lin L, Zou G. J. Org. Chem. 2012; 77: 10991
- 30b Nakagawa S, Bainbridge KA, Butcher K, Ellis D, Klute W, Ryckmans T. ChemMedChem 2012; 7: 233
- 30c Allwood DM, Blakemore DC, Brown AD, Ley SV. J. Org. Chem. 2014; 79: 328
- 30d Shen X, Gu N, Liu P, Ma X, Xie J, Liu Y, He L, Dai B. RSC Adv. 2015; 5: 63726
- 30e Merchant RR, Lopez JA. Org. Lett. 2020; 22: 2271
- 30f Ma X, Yeung CS. J. Org. Chem. 2021; 86: 10672
- 31a Perez AM. C, Valdés C. Angew. Chem. Int. Ed. 2012; 51: 5953
- 31b Plaza M, Perez-Aguilar MC, Valdés C. Chem. Eur. J. 2016; 22: 6253
- 32 Plaza M, Paraja M, Florentino L, Valdés C. Org. Lett. 2019; 21: 632
- 33a Florentino L, López L, Barroso R, Cabal M, Valdés C. Angew. Chem. Int. Ed. 2021; 60: 1273
- 33b López L, Cabal M, Valdés C. Angew. Chem. Int. Ed. 2022; 61: e202113370
- 34 Yang Y, Tsien J, Ben David A, Hughes JM. E, Merchant RR, Qin T. J. Am. Chem. Soc. 2021; 143: 471
- 35 Yang Y, Tsien J, Hughes JM. E, Peters BK, Merchant RR, Qin T. Nat. Chem. 2021; 13: 950
- 36 Bao Z, Huang M, Xu Y, Zhang X, Wu Y.-D, Wang J. Angew. Chem. Int. Ed. 2023; 62: e202216356
- 37 Li H, Wang L, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2012; 51: 2943
- 38 Li H, Shangguan X, Zhang Z, Huang S, Zhang Y, Wang J. Org. Lett. 2014; 16: 448
- 39 Ma Y, Reddy BR. P, Bi X. Org. Lett. 2019; 21: 9860
- 40 Tran DN, Battilocchio C, Lou S.-B, Hawkins JM, Ley SV. Chem. Sci. 2015; 6: 1120
- 41 Battilocchio C, Feist F, Hafner A, Simon M, Tran DN, Allwood DM, Blakemore DC, Ley SV. Nat. Chem. 2016; 8: 360
- 42 Wu G, Deng Y, Wu C, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2014; 53: 10510
- 43 Chen Y, Blakemore DC, Pasau P, Ley SV. Org. Lett. 2018; 20: 6569
- 44a Tufariello JJ, Lee LT. C. J. Am. Chem. Soc. 1966; 88: 4757
- 44b Musker WK, Stevens RR. Tetrahedron Lett. 1967; 8: 995
- 44c Koster R, Rickborn B. J. Am. Chem. Soc. 1967; 89: 2782
- 44d Tufariello JJ, Wojtkowski P, Lee LT. C. Chem. Commun. 1967; 505
- 44e Tufariello JJ, Lee LT. C, Wojtkowski P. J. Am. Chem. Soc. 1967; 89: 6804
- 45a Aggarwal VK, Fang GY, Schmidt AT. J. Am. Chem. Soc. 2005; 127: 1642
- 45b Fang GY, Aggarwal VK. Angew. Chem. Int. Ed. 2007; 46: 359
- 45c Fang GY, Wallner OA, Blasio ND, Ginesta X, Harvey JN, Aggarwal VK. J. Am. Chem. Soc. 2007; 129: 14632
- 45d Howells D, Robiette R, Fang GY, Knowles LS, Woodrow MD, Harvey JN, Aggarwal VK. Org. Biomol. Chem. 2008; 6: 1185
- 46 He Z, Song F, Sun H, Huang Y. J. Am. Chem. Soc. 2018; 140: 2693
- 47 Zhao W.-C, Li R.-P, Ma C, Liao Q.-Y, Wang M, He Z.-T. J. Am. Chem. Soc. 2022; 144: 2460
- 48 Su J, Li C, Hu X, Guo Y, Song Q. Angew. Chem. Int. Ed. 2022; 61: e202212740
- 49 Casoni G, Myers EL, Aggarwal VK. Synthesis 2016; 48: 3241