RSS-Feed abonnieren
DOI: 10.1055/a-2108-9626
Visible-Light-Induced C-3 Difluoroalkylation of Quinoxalin-2(1H)-ones with Difluoroiodane(III) Reagents under Catalyst-Free Conditions
This work was supported by National Natural Science Foundation of China (Grant no. 22077095).
Abstract
A visible-light-induced radical difluoroalkylation of quinoxalin-2(1H)-ones by hypervalent-iodine-based reagents was developed. To facilitate the final oxidative step, [bis(trifluoroacetoxy)iodo]benzene (PIFA) was employed as an oxidant. Moreover, a one-pot protocol for this transformation was realized by generating the difluoroalkylation reagent in situ. The readily accessible reagents and the mild reaction conditions make this reaction an alternative and practical strategy for the synthesis of C(3)-difluoroalkylated quinoxalin-2(1H)-ones.
Key words
difluoroalkylation - quinoxalinones - hypervalent iodine reagents - photocatalysis - catalyst-free reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2108-9626.
- Supporting Information
Publikationsverlauf
Eingereicht: 28. März 2023
Angenommen nach Revision: 12. Juni 2023
Accepted Manuscript online:
12. Juni 2023
Artikel online veröffentlicht:
18. August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Patel M, McHugh RJ. Jr, Cordova BC, Klabe RM, Erickson-Viitanen S, Trainor GL, Rodgers JD. Bioorg. Med. Chem. Lett. 2000; 10: 1729
- 1b Carta A, Piras S, Loriga G, Paglietti G. Mini-Rev. Med. Chem. 2006; 6: 1179
- 1c Li X, Yang K.-h, Li W.-l, Xu W.-f. Drugs Future. 2006; 31: 979
- 1d Shi L, Hu W, Wu J, Zhou H, Zhou H, Li X. Mini-Rev. Med. Chem. 2018; 18: 392
- 2a Carta A, Loriga M, Piras S, Paglietti G, La Colla P, Busonera B, Collu G, Loddo R. Med. Chem. 2006; 2: 113
- 2b Meyer E, Joussef AC, De Souza L. deB. P. Synth. Commun. 2006; 36: 729
- 2c Chen D, Bao W. Adv. Synth. Catal. 2010; 352: 955
- 2d Weïwer M, Spoonamore J, Wei JQ, Guichard B, Ross NT, Masso K, Silkworth W, Dandapani S, Palmer M, Scherer CA, Stern AM, Schreiber SL, Munoz B. ACS Med. Chem. Lett. 2012; 3: 1034
- 2e Pereira JA, Pessoa AM, Cordeiro MN. D. S, Fernandes R, Prudêncio C, Noronha JP, Vieira M. Eur. J. Med. Chem. 2015; 97: 664
- 2f Khattab SN, Abdel Moneim SA. H, Bekhit AA, El Massry AM, Hassan SY, El-Faham A, Ali Ahmed HE, Amer A. Eur. J. Med. Chem. 2015; 93: 308
- 2g Son J.-H, Zhu JS, Phuan P.-W, Cil O, Teuthorn AP, Ku CK, Lee S, Verkman AS, Kurth MJ. J. Med. Chem. 2017; 60: 2401
- 2h Ke Q, Yan G, Yu J, Wu X. Org. Biomol. Chem. 2019; 17: 5863
- 3a Monika M, Selvakumar S. Synthesis. 2019; 51: 4113
- 3b Sun K, Xiao F, Yu B, He W.-M. Chin. J. Catal. 2021; 41: 1921 ; see also ref. 2 (i)
- 4a Niu K, Ding L, Zhou P, Hao Y, Liu Y, Song H, Wang Q. Green Chem. 2021; 23: 3246
- 4b Xu J, Huang L, He L, Ni Z, Shen J, Li X, Chen K, Li W, Zhang P. Green Chem. 2021; 23: 2123
- 4c Pei C, Chen X, Li L, Li J, Zou D, Wu Y, Wu Y. Tetrahedron Lett. 2021; 83: 153409
- 4d Wang L, Chen Z, Fan G, Liu X, Liu P. J. Org. Chem. 2022; 87: 14580
- 4e Liu H.-F, He M.-X, Tang H.-T. Org. Chem. Front. 2022; 9: 5955
- 4f Samanta RK, Meher P, Murarka S. J. Org. Chem. 2022; 87: 10947
- 4g Li J, Hu J, Xiao Y, Yin K, Dan W, Fan S, Jin F, Wu H, Zhang R, Li J. Tetrahedron Lett. 2022; 88: 153511
- 4h Yang X, Meng W.-D, Xu X.-H, Huang Y. Org. Chem. Front. 2021; 8: 6597
- 4i Wang Z, Liu Q, Liu R, Ji Z, Li Y, Zhao X, Wei W. Chin. Chem. Lett. 2022; 33: 1479
- 5a Müller K, Faeh C, Diederich F. Science. 2007; 317: 1881
- 5b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 5c Fluorine in Medicinal, Chemistry and, Chemical Biology. Ojima I. Wiley–Blackwell; Chichester: 2009
- 5d Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
- 5e Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 5f Kirsch P. Modern Fluoroorganic. Chemistry; Synthesis, Reactivity: Wiley-VCH
- 5g Wang J, Sánchez-Roselló M, Aceña J, Pozo C, Sorochinsky AE, Fustero S. Soloshonok V. A., Liu H. 2014; 114: 2432
- 5h Liu Q, Ni C, Hu J. Natl. Sci. Rev. 2017; 4: 303
- 5i Emerging Fluorinated Motifs: Synthesis, Properties and Applications. Cahard D, Ma J.-A. Wiley-VCH; Weinheim: 2020
- 6a Dou G.-Y, Jiang Y.-Y, Xu K, Zeng C.-C. Org. Chem. Front. 2019; 6: 2392
- 6b Wang J, Sun B, Zhang L, Xu T, Xie Y, Jin C. Asian J. Org. Chem. 2019; 8: 1942
- 6c Xue W, Su Y, Wang K.-H, Cao L, Feng Y, Zhang W, Huang D, Hu Y. Asian J. Org. Chem. 2019; 8: 887
- 6d Mi X, Cui B, Zhang J, Pi C, Cui X. Tetrahedron Lett. 2022; 93: 153693
- 7 Wei Z, Qi S, Xu Y, Liu H, Wu J, Li H, Xia C, Duan G. Adv. Synth. Catal. 2019; 361: 5490
- 8 Hong G, Yuan J, Fu J, Pan G, Wang Z, Yang L, Xiao Y, Mao P, Zhang X. Org. Chem. Front. 2019; 6: 1173
- 9 Jin C, Zhuang X, Sun B, Li D, Zhu R. Asian J. Org. Chem. 2019; 8: 1490
- 10 Wang L, Liu H, Li F, Zhao J, Zhang H, Zhang Y. Adv. Synth. Catal. 2019; 361: 2354
- 11 Liu J, Huang Z, Wang C, Deng Z, Xu X, Zeng R, Zhao Y. Eur. J. Org. Chem. 2023; 26: e202300129
- 12 Wei Q, Lei L, Zhou T, Li A, Liu J, Zhao X, Lu K. Tetrahedron. 2021; 91: 132217
- 13a Lu K, Lei L, Wei Q, Zhou T, Jia X, Li Q, Zhao X. Tetrahedron Lett. 2021; 67: 152864
- 13b Lu K, Zhou T, Jia X, Wei P, Lei L, Xi X, Liu J, Zhao X. Asian J. Org. Chem. 2021; 10: 563
- 13c Zhou T, Liu R, Wang X, Rui M, Zhao X, Lu K. Asian J. Org. Chem. 2022; 11: e202200154
- 13d Wang X, Liu R, Zhang S, Zhou T, Zhao X, Lu K. Tetrahedron Lett. 2022; 96: 153761
- 13e Feng J, Jia X, Zhang S, Lu K, Cahard D. Org. Chem. Front. 2022; 9: 3598
- 14 Zhou N, Liu R, Zhang C, Wang K, Feng J, Zhao X, Lu K. Org. Lett. 2022; 24: 3576
- 15 Zhou N, Wang K, Zhao T, Liu R, Rui M, Zhao X, Feng J, Lu K. Asian J. Org. Chem. 2022; 11: e202200386
- 16 Liu R, Zhou N, Zhao T, Zhang Y, Wang K, Zhao X, Lu K. J. Org. Chem. 2023; 88: 483
- 17 Difluoroalkylated Quinoxalin-2(1H)-ones 3a–aa; General Procedure A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with the appropriate quinoxalin-2(1H)-one 1 (0.30 mmol), iodane 2 (0.60 mmol, 2.0 equiv), and PIFA (258 mg, 0.45 mmol). Anhyd 1,4-dioxane (1.5 mL) was added from a syringe under argon, and the mixture was stirred and irradiated by 24 W blue LEDs at 40 °C for 12 h. The mixture was then diluted with H2O (10 mL) and extracted with EtOAc (3 × 10 mL). The combined organic phase was dried (Na2SO4) and concentrated, and the residue was purified by chromatography (silica gel, PE–EtOAc). Ethyl Difluoro(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)acetate (3a) Yellow solid; yield: 81 mg (96%). 1H NMR (400 MHz, CDCl3): δ = 8.02 (dd, J = 8.1, 1.5 Hz, 1 H), 7.71 (ddd, J = 8.7, 7.3, 1.5 Hz, 1 H), 7.50–7.39 (m, 2 H), 4.42 (q, J = 7.1 Hz, 2 H), 3.72 (s, 3 H), 1.37 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 162.3 (t, J = 31.0 Hz, 1 C), 152.72, 147.8 (t, J = 24.0 Hz, 1 C), 134.1, 132.8, 131.6, 131.5, 124.5, 114.0, 109.6 (t, J = 251.0 Hz, 1 C), 61.0, 29.3, 14.1. 19F NMR (376 MHz, CDCl3): δ = –110.60 (s, 2 F).
For reviews, see:
For selected recent examples, see: