Hamostaseologie
DOI: 10.1055/a-2117-4614
Review Article

Classic Light Transmission Platelet Aggregometry: Do We Still Need it?

Jennifer Gebetsberger
1   Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
,
Florian Prüller
2   Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
› Institutsangaben

Abstract

For more than 50 years, light transmission aggregometry has been accepted as the gold standard test for diagnosing inherited platelet disorders in platelet-rich plasma, although there are other functional approaches performed in whole blood. In this article, several advantages and disadvantages of this technique over other laboratory approaches are discussed in the view of recent guidelines, and the necessity of functional assays, such as light transmission aggregometry in the era of molecular genetic testing, is highlighted.

Zusammenfassung

Seit mehr als fünfzig Jahren gilt die Aggregometrie mittels Lichttransmission als Goldstandard-Test zur Diagnose von erblichen Blutplättchenstörungen in Plättchen-reichem-Plasma, obwohl es noch weitere funktionelle Testansätze in Vollblut gibt. In diesem Artikel werden mehrere Vor- und Nachteile dieser Technik im Vergleich zu anderen laborbasierten Ansätzen im Hinblick auf aktuelle Leitlinien diskutiert, und die Notwendigkeit von funktionellen Assays, einschließlich der Aggregometrie mittels Lichttransmission, im Zeitalter der molekulargenetischen Tests wird hervorgehoben.

Supplementary Material



Publikationsverlauf

Eingereicht: 28. April 2023

Angenommen: 06. Oktober 2023

Artikel online veröffentlicht:
08. Dezember 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol 2019; 16 (03) 166-179
  • 2 Bennett JS. Platelet-fibrinogen interactions. Ann N Y Acad Sci 2001; 936: 340-354
  • 3 Sangkuhl K, Shuldiner AR, Klein TE, Altman RB. Platelet aggregation pathway. Pharmacogenet Genomics 2011; 21 (08) 516-521
  • 4 Ferroni P, Vazzana N, Riondino S, Cuccurullo C, Guadagni F, Davì G. Platelet function in health and disease: from molecular mechanisms, redox considerations to novel therapeutic opportunities. Antioxid Redox Signal 2012; 17 (10) 1447-1485
  • 5 Lassila R. Platelet function tests in bleeding disorders. Semin Thromb Hemost 2016; 42 (03) 185-190
  • 6 Larsen JB, Hvas A-M. Predictive value of whole blood and plasma coagulation tests for intra- and postoperative bleeding risk: a systematic review. Semin Thromb Hemost 2017; 43 (07) 772-805
  • 7 Jakoi A, Kumar N, Vaccaro A, Radcliff K. Perioperative coagulopathy monitoring. Musculoskelet Surg 2014; 98 (01) 1-8
  • 8 Tanaka KA, Bader SO, Sturgil EL. Diagnosis of perioperative coagulopathy–plasma versus whole blood testing. J Cardiothorac Vasc Anesth 2013; 27 (4, Suppl): S9-S15
  • 9 Paniccia R, Priora R, Liotta AA, Abbate R. Platelet function tests: a comparative review. Vasc Health Risk Manag 2015; 11: 133-148
  • 10 Lordkipanidzé M. Platelet function tests. Semin Thromb Hemost 2016; 42 (03) 258-267
  • 11 Gorog DA, Becker RC. Point-of-care platelet function tests: relevance to arterial thrombosis and opportunities for improvement. J Thromb Thrombolysis 2021; 51 (01) 1-11
  • 12 Hvas A-M, Grove EL. Platelet function tests: preanalytical variables, clinical utility, advantages, and disadvantages. Methods Mol Biol 2017; 1646: 305-320
  • 13 Gomez K, Anderson J, Baker P. et al; British Society for Haematology Guidelines. Clinical and laboratory diagnosis of heritable platelet disorders in adults and children: a British Society for Haematology Guideline. Br J Haematol 2021; 195 (01) 46-72
  • 14 Harrison P, Mackie I, Mumford A. et al; British Committee for Standards in Haematology. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br J Haematol 2011; 155 (01) 30-44
  • 15 Gresele P. Subcommittee on Platelet Physiology of the International Society on Thrombosis and Hemostasis. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost 2015; 13 (02) 314-322
  • 16 Knöfler R, Eberl W, Schulze H. et al. [Diagnosis of inherited diseases of platelet function. Interdisciplinary S2K guideline of the Permanent Paediatric Committee of the Society of Thrombosis and Haemostasis Research (GTH e. V.)]. Hamostaseologie 2014; 34 (03) 201-212
  • 17 Gesellschaft für Thrombose- und Hämostaseforschung (GTH e.V.). Diagnose von Thrombozytenfunktionsstörungen - Thrombozytopathien. 2018. https://register.awmf.org/de/leitlinien/detail/086-003
  • 18 Adler M, Kaufmann J, Alberio L, Nagler M. Diagnostic utility of the ISTH bleeding assessment tool in patients with suspected platelet function disorders. J Thromb Haemost 2019; 17 (07) 1104-1112
  • 19 Mumford J, Flanagan B, Keber B, Lam L. Hematologic conditions: platelet disorders. FP Essent 2019; 485: 32-43
  • 20 Palma-Barqueros V, Revilla N, Sánchez A. et al. Inherited platelet disorders: an updated overview. Int J Mol Sci 2021; 22 (09) 4521
  • 21 Bastida JM, Benito R, Lozano ML. et al. Molecular diagnosis of inherited coagulation and bleeding disorders. Semin Thromb Hemost 2019; 45 (07) 695-707
  • 22 Nurden A, Nurden P. Advances in our understanding of the molecular basis of disorders of platelet function. J Thromb Haemost 2011; 9 (Suppl. 01) 76-91
  • 23 Gresele P, Harrison P, Bury L. et al. Diagnosis of suspected inherited platelet function disorders: results of a worldwide survey. J Thromb Haemost 2014; 12 (09) 1562-1569
  • 24 Gresele P, Falcinelli E, Bury L. Laboratory diagnosis of clinically relevant platelet function disorders. Int J Lab Hematol 2018; 40 (Suppl. 01) 34-45
  • 25 Mezzano D, Harrison P, Frelinger III AL. et al. Expert opinion on the use of platelet secretion assay for the diagnosis of inherited platelet function disorders: communication from the ISTH SSC Subcommittee on Platelet Physiology. J Thromb Haemost 2022; 20 (09) 2127-2135
  • 26 Szanto T, Zetterberg E, Ramström S. et al; Nordic Haemophilia Council. Platelet function testing: current practice among clinical centres in Northern Europe. Haemophilia 2022; 28 (04) 642-648
  • 27 Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians. Blood Rev 2021; 48: 100784
  • 28 Kim B. Diagnostic workup of inherited platelet disorders. Blood Res 2022; 57 (S1): 11-19
  • 29 Rabbolini D, Connor D, Morel-Kopp M-C. et al; Sydney Platelet Group. An integrated approach to inherited platelet disorders: results from a research collaborative, the Sydney Platelet Group. Pathology 2020; 52 (02) 243-255
  • 30 Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194: 927-929
  • 31 O'Brien JR. Platelet aggregation: Part I Some effects of the adenosine phosphates, thrombin, and cocaine upon platelet adhesiveness. J Clin Pathol 1962; 15 (05) 446-452
  • 32 Ollgaard E. Macroscopic studies of platelet aggregation. Nature of an aggregating factor in red blood cells and platelets. Thromb Diath Haemorrh 1961; 6: 86-97
  • 33 Cattaneo M, Cerletti C, Harrison P. et al. Recommendations for the standardization of light transmission aggregometry: a consensus of the working party from the Platelet Physiology Subcommittee of SSC/ISTH. J Thromb Haemost 2013
  • 34 Stratmann J, Karmal L, Zwinge B, Miesbach W. Platelet aggregation testing on a routine coagulation analyzer: a method comparison study. Clin Appl Thromb Hemost 2019; 25: 1076029619885184
  • 35 Cardinal DC, Flower RJ. The ‘electronic platelet aggregometer’ [proceedings]. Br J Pharmacol 1979; 66 (01) 138P
  • 36 Nehaj F, Sokol J, Ivankova J. et al. First evidence: TRAP-induced platelet aggregation is reduced in patients receiving Xabans. Clin Appl Thromb Hemost 2018; 24 (06) 914-919
  • 37 Xiao Z, Théroux P. Platelet activation with unfractionated heparin at therapeutic concentrations and comparisons with a low-molecular-weight heparin and with a direct thrombin inhibitor. Circulation 1998; 97 (03) 251-256
  • 38 Enko D, Mangge H, Münch A. et al. Pneumatic tube system transport does not alter platelet function in optical and whole blood aggregometry, prothrombin time, activated partial thromboplastin time, platelet count and fibrinogen in patients on anti-platelet drug therapy. Biochem Med (Zagreb) 2017; 27 (01) 217-224
  • 39 Lau WC, Walker CT, Obilby D. et al. Evaluation of a BED-SIDE platelet function assay: performance and clinical utility. Ann Card Anaesth 2002; 5 (01) 33-42
  • 40 Cattaneo M, Lecchi A, Zighetti ML, Lussana F. Platelet aggregation studies: autologous platelet-poor plasma inhibits platelet aggregation when added to platelet-rich plasma to normalize platelet count. Haematologica 2007; 92 (05) 694-697
  • 41 Mani H, Luxembourg B, Kläffling C, Erbe M, Lindhoff-Last E. Use of native or platelet count adjusted platelet rich plasma for platelet aggregation measurements. J Clin Pathol 2005; 58 (07) 747-750
  • 42 Chandler WL, Brown AF, Chen D. et al. External quality assurance of platelet function assays: results of the College of American Pathologists Proficiency Testing Program. Arch Pathol Lab Med 2019; 143 (04) 472-482
  • 43 Althaus K, Zieger B, Bakchoul T, Jurk K. THROMKID-Plus Studiengruppe der Gesellschaft für Thrombose- und Hämostaseforschung (GTH) und der Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH). Standardization of light transmission aggregometry for diagnosis of platelet disorders: an inter-laboratory external quality assessment. Thromb Haemost 2019; 119 (07) 1154-1161
  • 44 Prüller F, Rosskopf K, Mangge H. et al. Implementation of buffy-coat-derived pooled platelet concentrates for internal quality control of light transmission aggregometry: a proof of concept study. J Thromb Haemost 2017; 15 (12) 2443-2450
  • 45 Hanke AA, Roberg K, Monaca E. et al. Impact of platelet count on results obtained from multiple electrode platelet aggregometry (Multiplate). Eur J Med Res 2010; 15 (05) 214-219
  • 46 Skipper MT, Rubak P, Stentoft J, Hvas AM, Larsen OH. Evaluation of platelet function in thrombocytopenia. Platelets 2018; 29 (03) 270-276
  • 47 Munnix ICA, Van Oerle R, Verhezen P. et al. Harmonizing light transmission aggregometry in the Netherlands by implementation of the SSC-ISTH guideline. Platelets 2021; 32 (04) 516-523
  • 48 Bret V-E, Pougault B, Guy A. et al. Assessment of light transmission aggregometry on the routine coagulation analyzer Sysmex CS-2500 using CE-marked agonists from Hyphen Biomed. Platelets 2019; 30 (04) 540-542
  • 49 Prüller F, Rabensteiner J, Koller C. et al. Platelet function testing using Born's optical aggregometry on automated coagulation analyzer systems compared to a manual aggregometer (Atellica COAG 360 - CS 2500i - Chronolog 700). Melbourne, Australia: 2019
  • 50 Frère C, Kobayashi K, Dunois C, Amiral J, Morange PE, Alessi MC. Assessment of platelet function on the routine coagulation analyzer Sysmex CS-2000i. Platelets 2018; 29 (01) 95-97
  • 51 Kim C-J, Kim J, Sabaté Del Río J, Ki DY, Kim J, Cho YK. Fully automated light transmission aggregometry on a disc for platelet function tests. Lab Chip 2021; 21 (23) 4707-4715
  • 52 Le Blanc J, Mullier F, Vayne C, Lordkipanidzé M. Advances in platelet function testing-light transmission aggregometry and beyond. J Clin Med 2020; 9 (08) 2636
  • 53 Lordkipanidzé M, Lowe GC, Kirkby NS. et al; UK Genotyping and Phenotyping of Platelets Study Group. Characterization of multiple platelet activation pathways in patients with bleeding as a high-throughput screening option: use of 96-well Optimul assay. Blood 2014; 123 (08) e11-e22
  • 54 Chan MV, Leadbeater PD, Watson SP, Warner TD. Not all light transmission aggregation assays are created equal: qualitative differences between light transmission and 96-well plate aggregometry. Platelets 2018; 29 (07) 686-689
  • 55 Cardinal DC, Flower RJ. The electronic aggregometer: a novel device for assessing platelet behavior in blood. J Pharmacol Methods 1980; 3 (02) 135-158
  • 56 Jin J, Baker SA, Hall ET, Gombar S, Bao A, Zehnder JL. Implementation of whole-blood impedance aggregometry for heparin-induced thrombocytopenia functional assay and case discussion. Am J Clin Pathol 2019; 152 (01) 50-58
  • 57 Aradi D, Storey RF, Komócsi A. et al; Working Group on Thrombosis of the European Society of Cardiology. Expert position paper on the role of platelet function testing in patients undergoing percutaneous coronary intervention. Eur Heart J 2014; 35 (04) 209-215
  • 58 Awidi A, Maqablah A, Dweik M, Bsoul N, Abu-Khader A. Comparison of platelet aggregation using light transmission and multiple electrode aggregometry in Glanzmann thrombasthenia. Platelets 2009; 20 (05) 297-301
  • 59 Moenen FCJI, Vries MJA, Nelemans PJ. et al. Screening for platelet function disorders with Multiplate and platelet function analyzer. Platelets 2019; 30 (01) 81-87
  • 60 Albanyan A, Al-Musa A, AlNounou R. et al. Diagnosis of Glanzmann thrombasthenia by whole blood impedance analyzer (MEA) vs. light transmission aggregometry. Int J Lab Hematol 2015; 37 (04) 503-508
  • 61 Al Ghaithi R, Drake S, Watson SP, Morgan NV, Harrison P. Comparison of multiple electrode aggregometry with lumi-aggregometry for the diagnosis of patients with mild bleeding disorders. J Thromb Haemost 2017; 15 (10) 2045-2052
  • 62 Haas T, Cushing MM, Varga S, Gilloz S, Schmugge M. Usefulness of multiple electrode aggregometry as a screening tool for bleeding disorders in a pediatric hospital. Platelets 2019; 30 (04) 498-505
  • 63 Sun P, McMillan-Ward E, Mian R, Israels SJ. Comparison of light transmission aggregometry and multiple electrode aggregometry for the evaluation of patients with mucocutaneous bleeding. Int J Lab Hematol 2019; 41 (01) 133-140
  • 64 Rubak P, Skipper MT, Larsen OH, Hvas AM. Continuous exploration of parameters derived from multiple electrode platelet aggregometry is warranted. Thromb Res 2018; 164: 45-47
  • 65 Hardy M, Lessire S, Kasikci S. et al. Effects of time-interval since blood draw and of anticoagulation on platelet testing (count, indices and impedance aggregometry): a systematic study with blood from healthy volunteers. J Clin Med 2020; 9 (08) 2515
  • 66 Lacom C, Tolios A, Löffler MW. et al. Assay validity of point-of-care platelet function tests in thrombocytopenic blood samples. Biochem Med (Zagreb) 2022; 32 (02) 020713
  • 67 Grove EL, Hossain R, Storey RF. Platelet function testing and prediction of procedural bleeding risk. Thromb Haemost 2013; 109 (05) 817-824
  • 68 Pai M, Wang G, Moffat KA. et al. Diagnostic usefulness of a lumi-aggregometer adenosine triphosphate release assay for the assessment of platelet function disorders. Am J Clin Pathol 2011; 136 (03) 350-358
  • 69 Fritsma GA, McGlasson DL. Whole blood platelet aggregometry. Methods Mol Biol 2017; 1646: 333-347
  • 70 Silva RCLS, Grabowski EF. Flow devices to assess platelet function: historical evolution and current choices. Semin Thromb Hemost 2019; 45 (03) 297-301
  • 71 van Asten I, Schutgens REG, Urbanus RT. Toward flow cytometry based platelet function diagnostics. Semin Thromb Hemost 2018; 44 (03) 197-205
  • 72 Jurk K, Shiravand Y. Platelet phenotyping and function testing in thrombocytopenia. J Clin Med 2021; 10 (05) 1114
  • 73 Berens C, Oldenburg J, Pötzsch B, Müller J. Glycophorin A-based exclusion of red blood cells for flow cytometric analysis of platelet glycoprotein expression in citrated whole blood. Clin Chem Lab Med 2020; 58 (12) 2081-2087
  • 74 Chandler WL. Measurement of microvesicle levels in human blood using flow cytometry. Cytometry B Clin Cytom 2016; 90 (04) 326-336
  • 75 Poncelet P, Robert S, Bailly N. et al. Tips and tricks for flow cytometry-based analysis and counting of microparticles. Transfus Apheresis Sci 2015; 53 (02) 110-126
  • 76 Hübl W, Assadian A, Lax J. et al. Assessing aspirin-induced attenuation of platelet reactivity by flow cytometry. Thromb Res 2007; 121 (01) 135-143
  • 77 Pasalic L, Pennings GJ, Connor D, Campbell H, Kritharides L, Chen VM. Flow cytometry protocols for assessment of platelet function in whole blood. Methods Mol Biol 2017; 1646: 369-389
  • 78 Vinholt PJ, Frederiksen H, Hvas A-M, Sprogøe U, Nielsen C. Measurement of platelet aggregation, independently of patient platelet count: a flow-cytometric approach. J Thromb Haemost 2017; 15 (06) 1191-1202
  • 79 De Cuyper IM, Meinders M, van de Vijver E. et al. A novel flow cytometry-based platelet aggregation assay. Blood 2013; 121 (10) e70-e80
  • 80 Podda G, Scavone M, Femia EA, Cattaneo M. Aggregometry in the settings of thrombocytopenia, thrombocytosis and antiplatelet therapy. Platelets 2018; 29 (07) 644-649
  • 81 Navred K, Martin M, Ekdahl L. et al. A simplified flow cytometric method for detection of inherited platelet disorders - a comparison to the gold standard light transmission aggregometry. PLoS One 2019; 14 (01) e0211130
  • 82 van Asten I, Schutgens REG, Baaij M. et al. Validation of flow cytometric analysis of platelet function in patients with a suspected platelet function defect. J Thromb Haemost 2018; 16 (04) 689-698
  • 83 Huskens D, Li L, Florin L. et al. Flow cytometric analysis of platelet function to improve the recognition of thrombocytopathy. Thromb Res 2020; 194: 183-189
  • 84 Nishiura N, Kashiwagi H, Akuta K. et al. Reevaluation of platelet function in chronic immune thrombocytopenia: impacts of platelet size, platelet-associated anti-αIIbβ3 antibodies and thrombopoietin receptor agonists. Br J Haematol 2020; 189 (04) 760-771
  • 85 Huskens D, Sang Y, Konings J. et al. Standardization and reference ranges for whole blood platelet function measurements using a flow cytometric platelet activation test. PLoS One 2018; 13 (02) e0192079
  • 86 Cai H, Mullier F, Frotscher B. et al. Usefulness of flow cytometric mepacrine uptake/release combined with CD63 assay in diagnosis of patients with suspected platelet dense granule disorder. Semin Thromb Hemost 2016; 42 (03) 282-291
  • 87 Montague SJ, Lim YJ, Lee WM, Gardiner EE. Imaging platelet processes and function-current and emerging approaches for imaging in vitro and in vivo . Front Immunol 2020; 11: 78
  • 88 Westmoreland D, Shaw M, Grimes W. et al. Super-resolution microscopy as a potential approach to diagnosis of platelet granule disorders. J Thromb Haemost 2016; 14 (04) 839-849
  • 89 Nakajima Y, Yada K, Ogiwara K. et al. A microchip flow-chamber assay screens congenital primary hemostasis disorders. Pediatr Int 2021; 63 (02) 160-167
  • 90 Iwanaga T, Miura N, Brainard BM, Brooks MB, Goggs R. A novel microchip flow chamber (total thrombus analysis system) to assess canine hemostasis. Front Vet Sci 2020; 7: 307
  • 91 Asher L, Hata J. Platelet electron microscopy: utilizing LEAN methodology to optimize laboratory workflow. Pediatr Dev Pathol 2020; 23 (05) 356-361
  • 92 Grabowski EF, Van Cott EM, Bornikova L, Boyle DC, Silva RL. Differentiation of patients with symptomatic low von Willebrand factor from those with asymptomatic low von Willebrand factor. Thromb Haemost 2020; 120 (05) 793-804
  • 93 Mangin PH, Gardiner EE, Nesbitt WS. et al; Subcommittee on Biorheology. In vitro flow based systems to study platelet function and thrombus formation: recommendations for standardization: communication from the SSC on Biorheology of the ISTH. J Thromb Haemost 2020; 18 (03) 748-752
  • 94 Jeon H-J, Qureshi MM, Lee SY, Badadhe JD, Cho H, Chung E. Laser speckle decorrelation time-based platelet function testing in microfluidic system. Sci Rep 2019; 9 (01) 16514
  • 95 Brunet JG, Iyer JK, Badin MS. et al. Electron microscopy examination of platelet whole mount preparations to quantitate platelet dense granule numbers: Implications for diagnosing suspected platelet function disorders due to dense granule deficiency. Int J Lab Hematol 2018; 40 (04) 400-407
  • 96 Brazilek RJ, Tovar-Lopez FJ, Wong AKT. et al. Application of a strain rate gradient microfluidic device to von Willebrand's disease screening. Lab Chip 2017; 17 (15) 2595-2608
  • 97 Stegner D, Heinze KG. Intravital imaging of megakaryocytes. Platelets 2020; 31 (05) 599-609
  • 98 Sanderson MJ, Smith I, Parker I. et al. Fluorescence microscopy. Cold Spring Harb Protoc 2014; 2014: pdb.top071795
  • 99 Welzel J, Kästle R, Sattler EC. Fluorescence (multiwave) confocal microscopy. Dermatol Clin 2016; 34 (04) 527-533
  • 100 Cohen Hyams T, Mam K, Killingsworth MC. Scanning electron microscopy as a new tool for diagnostic pathology and cell biology. Micron 2020; 130: 102797
  • 101 Kratzer MA, Negrescu EV, Hirai A, Yeo YK, Franke P, Siess W. The Thrombostat system. A useful method to test antiplatelet drugs and diets. Semin Thromb Hemost 1995; 21 (Suppl. 02) 25-31
  • 102 Favaloro EJ, Bonar R. External quality assessment/proficiency testing and internal quality control for the PFA-100 and PFA-200: an update. Semin Thromb Hemost 2014; 40 (02) 239-253
  • 103 Favaloro EJ. Time for a conceptual shift in assessment of internal quality control for whole blood or cell-based testing systems? An evaluation using platelet function and the PFA-100 as a case example. Clin Chem Lab Med 2013; 51 (04) 767-774
  • 104 Favaloro EJ. Clinical utility of the PFA-100. Semin Thromb Hemost 2008; 34 (08) 709-733
  • 105 Favaloro EJ, Lippi G, Franchini M. Contemporary platelet function testing. Clin Chem Lab Med 2010; 48 (05) 579-598
  • 106 Harrison P, Lordkipanidzé M. Testing platelet function. Hematol Oncol Clin North Am 2013; 27 (03) 411-441
  • 107 Russeau AP, Vall H, Manna B. Bleeding Time. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2023
  • 108 da Luz LT, Nascimento B, Rizoli S. Thrombelastography (TEG®): practical considerations on its clinical use in trauma resuscitation. Scand J Trauma Resusc Emerg Med 2013; 21: 29
  • 109 Othman M, Kaur H. Thromboelastography (TEG). Methods Mol Biol 2017; 1646: 533-543
  • 110 Volod O, Viola F. The Quantra system: system description and protocols for measurements. Methods Mol Biol 2023; 2663: 743-761
  • 111 Shaydakov ME, Sigmon DF, Blebea J. Thromboelastography. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2023
  • 112 Ramli H, Zainal NFA, Hess M. et al. Basic principle and good practices of rheology for polymers for teachers and beginners. Chem Teach Int 2022; 4: 307-326
  • 113 Basics of rheology | Anton Paar Wiki. Anton Paar. Im Internet. Accessed October 18, 2023 at: https://wiki.anton-paar.com/en/basics-of-rheology/
  • 114 Rogers AL, Allman RD, Fang X. et al. Thromboelastography - platelet mapping allows safe and earlier urgent coronary artery bypass grafting. Ann Thorac Surg 2022; 113 (04) 1119-1125
  • 115 Khoriaty R, Ozel AB, Ramdas S. et al. Genome-wide linkage analysis and whole-exome sequencing identifies an ITGA2B mutation in a family with thrombocytopenia. Br J Haematol 2019; 186 (04) 574-579
  • 116 Johnson B, Lowe GC, Futterer J. et al; UK GAPP Study Group. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects. Haematologica 2016; 101 (10) 1170-1179
  • 117 Lu JT, Campeau PM, Lee BH. Genotype-phenotype correlation – promiscuity in the era of next-generation sequencing. N Engl J Med 2014; 371 (07) 593-596
  • 118 Ewans LJ, Schofield D, Shrestha R. et al. Whole-exome sequencing reanalysis at 12 months boosts diagnosis and is cost-effective when applied early in Mendelian disorders. Genet Med 2018; 20 (12) 1564-1574
  • 119 Weaver JM, Edwards PA. Targeted next-generation sequencing for routine clinical screening of mutations. Genome Med 2011; 3 (09) 58
  • 120 Lambert MP. Improving interpretation of genetic testing for hereditary hemorrhagic, thrombotic, and platelet disorders. Hematology (Am Soc Hematol Educ Program) 2020; 2020 (01) 76-81
  • 121 Kanavy DM, McNulty SM, Jairath MK. et al. Comparative analysis of functional assay evidence use by ClinGen Variant Curation Expert Panels. Genome Med 2019; 11 (01) 77
  • 122 Brnich SE, Rivera-Muñoz EA, Berg JS. Quantifying the potential of functional evidence to reclassify variants of uncertain significance in the categorical and Bayesian interpretation frameworks. Hum Mutat 2018; 39 (11) 1531-1541
  • 123 Louzil J, Stikarova J, Provaznikova D. et al. Diagnosing Czech patients with inherited platelet disorders. Int J Mol Sci 2022; 23 (22) 14386
  • 124 Boeckelmann D, Wolter M, Neubauer K. et al. Hermansky-Pudlak syndrome: identification of novel variants in the genes HPS3, HPS5, and DTNBP1 (HPS-7). Front Pharmacol 2022; 12: 786937
  • 125 Tomek A, Matʼoška V, Frýdmanová A. et al. Impact of CYP2C19 polymorphisms on clinical outcomes and antiplatelet potency of clopidogrel in Caucasian poststroke survivors. Am J Ther 2018; 25 (02) e202-e212
  • 126 Tyagi T, Jain K, Gu SX. et al. A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences. Nat Cardiovasc Res 2022; 1 (03) 223-237
  • 127 Boeckelmann D, Glonnegger H, Sandrock-Lang K, Zieger B. Pathogenic aspects of inherited platelet disorders. Hamostaseologie 2021; 41 (06) 460-468
  • 128 Baker-Groberg SM, Lattimore S, Recht M, McCarty OJ, Haley KM. Assessment of neonatal platelet adhesion, activation, and aggregation. J Thromb Haemost 2016; 14 (04) 815-827
  • 129 Driver B, Marks DC, van der Wal DE. Not all (N)SAID and done: effects of nonsteroidal anti-inflammatory drugs and paracetamol intake on platelets. Res Pract Thromb Haemost 2019; 4 (01) 36-45
  • 130 Gremmel T, Koppensteiner R, Panzer S. Comparison of aggregometry with flow cytometry for the assessment of agonistś-induced platelet reactivity in patients on dual antiplatelet therapy. PLoS One 2015; 10 (06) e0129666
  • 131 Ramström S, Södergren AL, Tynngård N, Lindahl TL. Platelet function determined by flow cytometry: new perspectives?. Semin Thromb Hemost 2016; 42 (03) 268-281
  • 132 Nugent D, Kunicki T. Platelet genomics: the role of platelet size and number in health and disease. Platelets 2017; 28 (01) 27-33
  • 133 Bariana TK, Ouwehand WH, Guerrero JA, Gomez K. BRIDGE Bleeding, Thrombotic and Platelet Disorders and ThromboGenomics Consortia. Dawning of the age of genomics for platelet granule disorders: improving insight, diagnosis and management. Br J Haematol 2017; 176 (05) 705-720
  • 134 Bertier G, Hétu M, Joly Y. Unsolved challenges of clinical whole-exome sequencing: a systematic literature review of end-users' views. BMC Med Genomics 2016; 9 (01) 52
  • 135 Daber R, Sukhadia S, Morrissette JJD. Understanding the limitations of next generation sequencing informatics, an approach to clinical pipeline validation using artificial data sets. Cancer Genet 2013; 206 (12) 441-448
  • 136 Langer S, Dass J, Saraf A, Kotwal J. Platelet function tests: a 5-year audit of platelet function tests done for bleeding disorders in a tertiary care center of a developing country. Indian J Pathol Microbiol 2018; 61 (03) 366-370
  • 137 Nava T, Rivard G-E, Bonnefoy A. Challenges on the diagnostic approach of inherited platelet function disorders: Is a paradigm change necessary?. Platelets 2018; 29 (02) 148-155
  • 138 Sharma R, Jamwal M, Senee HK. et al. Next-generation sequencing based approach to identify underlying genetic defects of Glanzmann thrombasthenia. Indian J Hematol Blood Transfus 2021; 37 (03) 414-421
  • 139 Yang EJ, Shim YJ, Kim HS. et al; On Behalf of the Benign Hematology Committee of the Korean Pediatric Hematology Oncology Group Kphog. Genetic confirmation and identification of novel variants for Glanzmann thrombasthenia and other inherited platelet function disorders: a study by the Korean Pediatric Hematology Oncology Group (KPHOG). Genes (Basel) 2021; 12 (05) 693
  • 140 Kannan M, Saxena R. No genetic abnormalities identified in α2IIb and β3: phenotype overcomes genotype in Glanzmann thrombasthenia. Int J Lab Hematol 2017; 39 (02) e41-e44
  • 141 Bray PF, Rosa JP, Lingappa VR, Kan YW, McEver RP, Shuman MA. Biogenesis of the platelet receptor for fibrinogen: evidence for separate precursors for glycoproteins IIb and IIIa. Proc Natl Acad Sci U S A 1986; 83 (05) 1480-1484
  • 142 Stasko J, Holly P, Kubisz P. A new decade awaits sticky platelet syndrome: where are we now, how do we manage and what are the complications?. Expert Rev Hematol 2022; 15 (01) 53-63
  • 143 Sokol J, Skerenova M, Biringer K, Lasabova Z, Stasko J, Kubisz P. Genetic variations of the GP6 regulatory region in patients with sticky platelet syndrome and miscarriage. Expert Rev Hematol 2015; 8 (06) 863-868
  • 144 Yagmur E, Bast E, Mühlfeld AS. et al. High prevalence of sticky platelet syndrome in patients with infertility and pregnancy loss. J Clin Med 2019; 8 (09) 1328
  • 145 Solis-Jimenez F, Hinojosa-Heredia H, García-Covarrubias L, Soto-Abraham V, Valdez-Ortiz R. Sticky platelet syndrome: an unrecognized cause of acute thrombosis and graft loss. Case Rep Nephrol 2018; 2018: 3174897
  • 146 Stanciakova L, Skerenova M, Holly P. et al. Genetic origin of the sticky platelet syndrome. Rev Hematol Mex 2016; 17: 139-143
  • 147 Kubisz P, Stanciakova L, Stasko J, Dobrotova M, Skerenova M, Ivankova J, Holly P. Sticky platelet syndrome: an important cause of life-threatening thrombotic complications. Expert review of hematology 2016; 9 (01) 21-35
  • 148 Aliotta A, Bertaggia Calderara D, Zermatten MG, Marchetti M, Alberio L. Thrombocytopathies: not just aggregation defects-the clinical relevance of procoagulant platelets. J Clin Med 2021; 10 (05) 894
  • 149 Han X, Li C, Zhang S. et al. Why thromboembolism occurs in some patients with thrombocytopenia and treatment strategies. Thromb Res 2020; 196: 500-509
  • 150 Lambert MP. What to do when you suspect an inherited platelet disorder. Hematology (Am Soc Hematol Educ Program) 2011; 2011: 377-383