Neonatologie Scan 2024; 13(04): 295-310
DOI: 10.1055/a-2118-1320
CME-Fortbildung

Postnatale Infektionen bei Frühgeborenen

Neurologische und respiratorische Langzeitkomplikationen
Alexander Humberg

Frühgeborene haben ein erhöhtes Risiko für eine Vielzahl von Komplikationen. Mit Erreichen einer sehr guten Überlebensfähigkeit von Frühgeborenen in Ländern mit gut ausgestatteten Gesundheitssystemen stellt sich die Frage der Lebensqualität der Kinder und der Identifikation von Faktoren, um diese Qualität zu verbessern. Die Kontrolle von Infektionen spielt hier eine wichtige Rolle, da diese einen Einfluss auf die Langzeitgesundheit von Frühgeborenen haben.

Kernaussagen
  • Frühgeborene haben ein erhöhtes Risiko für eine Vielzahl von Komplikationen, einschließlich neurologischer und respiratorischer Langzeitfolgen.

  • Infektionen stellen eine bedeutende Gefahr für Frühgeborene dar, da sie aufgrund ihres unreifen Immunsystems besonders anfällig sind.

  • Die Kontrolle von Infektionen spielt eine wichtige Rolle bei der Verbesserung der Langzeitgesundheit von Frühgeborenen.

  • Infektionen erhöhen das Risiko von Frühgeborenen für neurologische Entwicklungsverzögerungen, Atemwegsbeschwerden und chronische Lungenerkrankungen.

  • Entzündungsreaktionen im Gehirn von Frühgeborenen können zu einer Vielzahl von Problemen führen, einschließlich Schädigungen der weißen Substanz, die mit neurologischen Beeinträchtigungen, wie z.B. motorischen Defiziten, verbunden sind.

  • Infektionen können durch Immunaktivierung in den Lungen zu strukturellen Veränderungen und pulmonalen Komplikationen führen, die die respiratorische Funktion beeinträchtigen und langfristige Auswirkungen auf die Lungenfunktion haben können.

  • Die unvollständige Entwicklung der Lunge bei der Frühgeburt kann zu Problemen mit der Lungenfunktion und -struktur führen und die Entstehung einer chronischen Lungenerkrankung begünstigen.

  • Ehemalige Frühgeborene zeigen eine reduzierte exspiratorische 1-Sekunden-Kapazität und erhöhte Atemwegswiderstände, was zu verringerter Belastungstoleranz im Alltag führen kann.

  • Präventionsmaßnahmen wie Händehygiene, Überwachung von Infektionen und Vermeidung von Personalmangel spielen eine wichtige Rolle bei der Prophylaxe von Langzeitschäden durch Infektionen.

  • Eine umfassende Betreuung und Überwachung von Frühgeborenen, insbesondere in Bezug auf die Prävention und Behandlung von Infektionen sowie die frühzeitige Intervention bei neurologischen und pulmonalen Komplikationen, ist entscheidend, um langfristige Gesundheitsprobleme zu minimieren.



Publication History

Article published online:
03 December 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 2008; 371: 261-269
  • 2 Pierrat V, Marchand-Martin L, Arnaud C. et al. Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks’ gestation in France in 2011: EPIPAGE-2 cohort study. BMJ 2017; 358: j3448
  • 3 Platt MJ. Outcomes in preterm infants. Public Health 2014; 128: 399-403
  • 4 Humberg A, Fortmann I, Siller B. et al. Preterm birth and sustained inflammation: consequences for the neonate. Semin Immunopathol 2020; 42: 451-468
  • 5 Coggins SA, Glaser K. Updates in late-onset sepsis: risk assessment, therapy, and outcomes. Neoreviews 2022; 23: 738-755
  • 6 Villamor-Martinez E, Lubach GA, Rahim OM. et al. Association of histological and clinical chorioamnionitis with neonatal sepsis among preterm infants: a systematic review, meta-analysis, and meta-regression. Front Immunol 2020; 11: 972
  • 7 Stoll BJ, Hansen N, Fanaroff AA. et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD neonatal research network. Pediatrics 2002; 110: 285-291
  • 8 Shah J, Jefferies A, Yoon E. et al. Risk factors and outcomes of late-onset bacterial sepsis in preterm neonates born at <32 weeks’ gestation. Am J Perinatol 2014; 32: 675-682
  • 9 Hornik CP, Fort P, Clark RH. et al. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum Dev 2012; 88: S69-S74
  • 10 Kuppala VS, Meinzen-Derr J, Morrow AL. et al. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J Pediatr 2011; 159: 720-725
  • 11 Spiegler J, Preuß M, Gebauer C. et al. Does breastmilk influence the development of bronchopulmonary dysplasia?. J Pediatr 2016; 169: 76-80.e4
  • 12 Köstlin-Gille N, Härtel C, Haug C. et al. Epidemiology of early and late onset neonatal sepsis in very low birthweight infants. Pediatr Infect Dis J 2021; 40: 255-259
  • 13 Dong Y, Speer CP, Glaser K. Beyond sepsis: staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity. Virulence 2018; 9: 621-633
  • 14 Humberg A, Fortmann MI, Spiegler J. et al. Recurrent late-onset sepsis in extremely low birth weight infants is associated with motor deficits in early school age. Neonatology 2022; 119: 695-702
  • 15 Strunk T, Prosser A, Levy O. et al. Responsiveness of human monocytes to the commensal bacterium Staphylococcus epidermidis develops late in gestation. Pediatr Res 2012; 72: 10-18
  • 16 Tsai M-H, Hsu J-F, Chu S-M. et al. Incidence, clinical characteristics and risk factors for adverse outcome in neonates with late-onset sepsis. Pediatr Infect Dis J 2014; 33: e7-e13
  • 17 Boghossian NS, Page GP, Bell EF. et al. Late-onset sepsis in very low birth weight infants from singleton and multiple-gestation births. J Pediatr 2013; 162: 1120-1124.e1
  • 18 Boghossian NS, Page GP, Bell EF. et al. Late-onset sepsis in very low birth weight infants from singleton and multiple-gestation births. J Pediatr 2013; 162: 1120-1124.e1
  • 19 Greenberg RG, Kandefer S, Do BT. et al. Late-onset sepsis in extremely premature infants. Pediatr Infect Dis J 2017; 36: 774-779
  • 20 Vergnano S, Menson E, Kennea N. et al. Neonatal infections in England: the NeonIN surveillance network. Arch Dis Child Fetal Neonatal Ed 2011; 96: F9-F14
  • 21 Civardi E, Tzialla C, Baldanti F. et al. Viral outbreaks in neonatal intensive care units: what we do not know. Am J Infect Control 2013; 41: 854-856
  • 22 Caserta MT, Yang H, Gill SR. et al. Viral respiratory infections in preterm infants during and after hospitalization. J Pediatr 2017; 182: 53-58.e3
  • 23 Stoll BJ, Hansen N, Fanaroff AA. et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD neonatal research network. Pediatrics 2002; 110: 285-291
  • 24 Dong Y, Glaser K, Speer CP. Late-onset sepsis caused by Gram-negative bacteria in very low birth weight infants: a systematic review. Expert Rev Anti Infect Ther 2019; 17: 177-188
  • 25 Humberg A, Härtel C, Rausch TK. et al. Active perinatal care of preterm infants in the German Neonatal Network. Arch Dis Child Fetal Neonatal Ed 2020; 105: 190-195
  • 26 Greenberg RG, Kandefer S, Do BT. et al. Late-onset sepsis in extremely premature infants. Pediatr Infect Dis J 2017; 36: 774-779
  • 27 Regev RH, Arnon S, Litmanovitz I. et al. Association between neonatal morbidities and head growth from birth until discharge in very-low-birthweight infants born preterm: a population-based study. Dev Med Child Neurol 2016; 58: 1159-1166
  • 28 Khwaja O, Volpe JJ. Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 2008; 93: F153-61
  • 29 Lawson LJ, Perry VH. The unique characteristics of inflammatory responses in mouse brain are acquired during postnatal development. Eur J Neurosci 1995; 7: 1584-1595
  • 30 Mazaheri F, Breus O, Durdu S. et al. Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia. Nat Commun 2014; 5: 4046
  • 31 Paolicelli RC, Bolasco G, Pagani F. et al. Synaptic pruning by microglia is necessary for normal brain development. Science (1979) 2011; 333: 1456-1458
  • 32 Bokobza C, Van Steenwinckel J, Mani S. et al. Neuroinflammation in preterm babies and autism spectrum disorders. Pediatr Res 2019; 85: 155-165
  • 33 Norden DM, Fenn AM, Dugan A. et al. TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation. Glia 2014; 62: 881-895
  • 34 Shiow LR, Favrais G, Schirmer L. et al. Reactive astrocyte COX2-PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury. Glia 2017; 65: 2024-2037
  • 35 Leviton A, Gilles F, Neff R. et al. Multivariate analysis of risk of perinatal telencephalic leucencephalopathy. Am J Epidemiol 1976; 104: 621-626
  • 36 Bangma JT, Hartwell H, Santos HP. et al. Placental programming, perinatal inflammation, and neurodevelopment impairment among those born extremely preterm. Pediatr Res 2021; 89: 326-335
  • 37 Glass TJA, Chau V, Grunau RE. et al. Multiple postnatal infections in newborns born preterm predict delayed maturation of motor pathways at term-equivalent age with poorer motor outcomes at 3 years. J Pediatr 2018; 196: 91-97.e1
  • 38 Wang X, Stridh L, Li W. et al. Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a myd88-dependent manner. J Immunol 2009; 183: 7471-7477
  • 39 Cai S, Thompson DK, Anderson PJ. et al. Short- and long-term neurodevelopmental outcomes of very preterm infants with neonatal sepsis: a systematic review and meta-analysis. Children 2019; 6: 131
  • 40 Humberg A, Spiegler J, Fortmann MI. et al. Surgical necrotizing enterocolitis but not spontaneous intestinal perforation is associated with adverse neurological outcome at school age. Sci Rep 2020; 10: 2373
  • 41 Lee ES, Kim E-K, Shin S han. et al. Factors associated with neurodevelopment in preterm infants with systematic inflammation. BMC Pediatr 2021; 21: 114
  • 42 Dubner SE, Dodson CK, Marchman VA. et al. White matter microstructure and cognitive outcomes in relation to neonatal inflammation in 6-year-old children born preterm. Neuroimage Clin 2019; 23: 101832
  • 43 Alshaikh B, Yusuf K, Sauve R. Neurodevelopmental outcomes of very low birth weight infants with neonatal sepsis: systematic review and meta-analysis. J Perinatol 2013; 33: 558-564
  • 44 Stoll B, Hansen N, Adams-Chapman I. et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 2004; 292: 2357-65
  • 45 Kuban KCK, Joseph RM, O’Shea TM. et al. Circulating inflammatory-associated proteins in the first month of life and cognitive impairment at age 10 years in children born extremely preterm. J Pediatr 2017; 180: 116-123.e1
  • 46 Mukhopadhyay S, Puopolo KM, Hansen NI. et al. Neurodevelopmental outcomes following neonatal late-onset sepsis and blood culture-negative conditions. Arch Dis Child Fetal Neonatal Ed 2021; 106: 467-473
  • 47 Mitha A, Foix-L’Hélias L, Arnaud C. et al. Neonatal infection and 5-year neurodevelopmental outcome of very preterm infants. Pediatrics 2013; 132: e372-80
  • 48 Bright HR, Babata K, Allred EN. et al. Neurocognitive outcomes at 10 years of age in extremely preterm newborns with late-onset bacteremia. J Pediatr 2017; 187: 43-49.e1
  • 49 van Tilborg E, Achterberg EJM, van Kammen CM. et al. Combined fetal inflammation and postnatal hypoxia causes myelin deficits and autism-like behavior in a rat model of diffuse white matter injury. Glia 2018; 66: 78-93
  • 50 Twisselmann N, Pagel J, Künstner A. et al. Hyperoxia/hypoxia exposure primes a sustained pro-inflammatory profile of preterm infant macrophages upon LPS stimulation. Front Immunol 2021; 12: 762789
  • 51 Novak I, Morgan C, Adde L. et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr 2017; 171: 897-907
  • 52 Shahzad T, Radajewski S, Chao C-M. et al. Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development. Mol Cell Pediatr 2016; 3: 23
  • 53 Guo R-F, Ward PA. Role of oxidants in lung injury during sepsis. Antioxid Redox Signal 2007; 9: 1991-2002
  • 54 Galani V, Tatsaki E, Bai M. et al. The role of apoptosis in the pathophysiology of Acute Respiratory Distress Syndrome (ARDS): an up-to-date cell-specific review. Pathol Res Pract 2010; 206: 145-150
  • 55 Simmons J, Pittet J-F. The coagulopathy of acute sepsis. Curr Opin Anaesthesiol 2015; 28: 227-236
  • 56 Principi N, Di Pietro GM, Esposito S. Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies. J Transl Med 2018; 16: 36
  • 57 Davidson L, Berkelhamer S. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes. J Clin Med 2017; 6: 4
  • 58 Leroy S, Caumette E, Waddington C. et al. A time-based analysis of inflammation in infants at risk of bronchopulmonary dysplasia. J Pediatr 2018; 192: 60-65.e1
  • 59 Härtel C, Pagel J, Spiegler J. et al. Lactobacillus acidophilus/Bifidobacterium infantis probiotics are associated with increased growth of VLBWI among those exposed to antibiotics. Sci Rep 2017; 7: 5633
  • 60 Heydarian M, Schulz C, Stoeger T. et al. Association of immune cell recruitment and BPD development. Mol Cell Pediatr 2022; 9: 16
  • 61 Bonadies L, Zaramella P, Porzionato A. et al. Present and future of bronchopulmonary dysplasia. J Clin Med 2020; 9: 1539
  • 62 Tuková J, Koucký V, Marková D. et al. Symptomatic preterm infants suffer from lung function deficits, regardless of bronchopulmonary dysplasia. Pediatr Pulmonol 2022; 57: 3119-3128
  • 63 Northway WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. N Engl J Med 1967; 276: 357-368
  • 64 O’Brodovich HM, Mellins RB. Bronchopulmonary dysplasia. Unresolved neonatal acute lung injury. Am Rev Respir Dis 1985; 132: 694-709
  • 65 Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001; 163: 1723-1729
  • 66 Coalson JJ. Pathology of bronchopulmonary dysplasia. Semin Perinatol 2006; 30: 179-184
  • 67 Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol 1998; 29: 710-717
  • 68 Nuthakki S, Ahmad K, Johnson G. et al. Bronchopulmonary dysplasia: ongoing challenges from definitions to clinical care. J Clin Med 2023; 12: 3864
  • 69 Bonadies L, Cavicchiolo ME, Priante E. et al. Prematurity and BPD: what general pediatricians should know. Eur J Pediatr 2023; 182: 1505-1516
  • 70 Yang Y, Li J, Mao J. Early diagnostic value of C-reactive protein as an inflammatory marker for moderate-to-severe bronchopulmonary dysplasia in premature infants with birth weight less than 1500 g. Int Immunopharmacol 2022; 103: 108462
  • 71 Kalikkot Thekkeveedu R, Guaman MC, Shivanna B. Bronchopulmonary dysplasia: a review of pathogenesis and pathophysiology. Respir Med 2017; 132: 170-177
  • 72 Schelonka RL, Katz B, Waites KB. et al. Critical appraisal of the role of ureaplasma in the development of bronchopulmonary dysplasia with metaanalytic techniques. Pediatr Infect Dis J 2005; 24: 1033-1039
  • 73 Lowe J, Watkins WJ, Edwards MO. et al. Association between pulmonary ureaplasma colonization and bronchopulmonary dysplasia in preterm infants. Pediatr Infect Dis J 2014; 33: 697-702
  • 74 Jensen EA, Schmidt B. Epidemiology of bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol 2014; 100: 145-157
  • 75 Klinger G, Levy I, Sirota L. et al. Outcome of early-onset sepsis in a national cohort of very low birth weight infants. Pediatrics 2010; 125: e736-e740
  • 76 Marshall DD, Kotelchuck M, Young TE. et al. Risk factors for chronic lung disease in the surfactant era: a north carolina population-based study of very low birth weight infants. Pediatrics 1999; 104: 1345-1350
  • 77 Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics 2009; 123: 1314-1319
  • 78 Humberg A, Fortmann I, Siller B. et al. Preterm birth and sustained inflammation: consequences for the neonate. Semin Immunopathol 2020; 42: 451-468
  • 79 Groneck P, Reuss D, Götze-Speer B. et al. Effects of dexamethasone on chemotactic activity and inflammatory mediators in tracheobronchial aspirates of preterm infants at risk for chronic lung disease. J Pediatr 1993; 122: 938-944
  • 80 Ng PC. The effectiveness and side effects of dexamethasone in preterm infants with bronchopulmonary dysplasia. Arch Dis Child 1993; 68: 330-336
  • 81 van de Loo M, van Kaam A, Offringa M. et al. Corticosteroids for the prevention and treatment of bronchopulmonary dysplasia: an overview of systematic reviews. Cochrane Database Syst Rev 2024; 4: CD013271