Subscribe to RSS
DOI: 10.1055/a-2126-1897
Small Aromatics Bearing Two Diarylamino Termini: Highly Reducing Organic Photocatalysts
The works highlighted in the present account were supported by JSPS (KAKENHI Grants 16H06038 and 21H01928), MEXT [KAKENHI Grant 21H05209 in Digitalization-Driven Transformative Organic Synthesis (Digi-TOS)], and JST CREST (Grant JPMJCR18R4).
Dedicated to Professor Dennis Curran on the occasion of his 70th birthday.
Abstract
Small aromatics such as anthracene, naphthalene, or benzene bearing two diarylamino termini function as highly reducing organic photocatalysts (OPCs). In particular, the small aromatic core remarkably enhances the reducing power of the catalyst in the excited state. An appropriate combination of an OPC and an electron-accepting fluoroalkylating reagent is the key to successful radical fluoroalkylation. The basic design of the photocatalyst and the photocatalytic fluoroalkylation of olefins are discussed.
1 Introduction
2 Basic Catalyst Design and Photo- and Electrochemical Properties
3 Photocatalytic Reactions of 9,10-Bis(diphenylamino)anthracene Derivatives
4 Photocatalytic Reactions of 1,4-Bis(diphenylamino)naphthalene Derivatives
5 Photocatalytic Reactions of 1,4-Bis(diphenylamino)benzene
6 Summary and Outlook
Key words
photoredox catalysis - organocatalysis - radical reaction - fluoroalkylation - electron transfer - photoreactionPublication History
Received: 31 May 2023
Accepted after revision: 10 July 2023
Accepted Manuscript online:
10 July 2023
Article published online:
22 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 The works highlighted in the present account were mainly carried out at the author’s previous affiliation, the Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology.
- 2 Visible Light Photocatalysis in Organic Chemistry . Stephenson CR. J, Yoon TP, MacMillan DW. C. Wiley-VCH; Weinheim: 2018
- 3 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
- 4 Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Berkessel A, Gröger H. Wiley-VCH; Weinheim: 2005
- 5 Photochemically-Generated Intermediates in Synthesis. Albini A, Fagnoni M. Wiley; Hoboken: 2013
- 6a Fukuzumi S, Ohkubo K. Chem. Sci. 2013; 4: 561
- 6b Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
- 6c Hari DP, König B. Chem. Commun. 2014; 50: 6688
- 6d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 6e Silvi M, Melchiorre P. Nature 2018; 554: 41
- 6f Uygur M, García Mancheño O. Org. Biomol. Chem. 2019; 17: 5475
- 6g Lee Y, Kwon MS. Eur. J. Org. Chem. 2020; 6028
- 6h Vega-Peñaloza A, Mateos J, Companyó X, Escudero-Casao M, Dell’Amico L. Angew. Chem. Int. Ed. 2020; 60: 1082
- 6i Wu Y, Kim D, Teets TS. Synlett 2022; 33: 1154
- 6j Noto N, Saito S. ACS Catal. 2022; 12: 15400
- 7a Dwivedi V, Kalsi D, Sundararaju B. ChemCatChem 2019; 11: 5160
- 7b Barham JP, König B. Angew. Chem. Int. Ed. 2020; 59: 11732
- 7c Castellanos-Soriano J, Herrera-Luna JC, Díaz Díaz D, Jiménez MC, Pérez-Ruiz R. Org. Chem. Front. 2020; 7: 1709
- 7d Glaser F, Kerzig C, Wenger OS. Angew. Chem. Int. Ed. 2020; 59: 10266
- 7e Liu J, Lu L, Wood D, Lin S. ACS Cent. Sci. 2020; 6: 1317
- 7f Koike T, Akita M. Trends Chem. 2021; 3: 416
- 7g Li P, Zhang T, Mushtaq MA, Wu S, Xiang X, Yan D. Chem. Rec. 2021; 21: 841
- 7h Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
- 7i Wu S, Kaur J, Karl TA, Tian X, Barham JP. Angew. Chem. Int. Ed. 2022; 61: e202107811
- 8a Noto N, Tanaka Y, Koike T, Akita M. ACS Catal. 2018; 8: 9408
- 8b Noto N, Koike T, Akita M. ACS Catal. 2019; 9: 4382
- 8c Noto N, Takahashi K, Goryo S, Takakado A, Iwata K, Koike T, Akita M. J. Org. Chem. 2020; 85: 13220
- 8d Hyodo Y, Takahashi K, Chitose Y, Abe M, Yoshizawa M, Koike T, Akita M. Synlett 2021; 33: 1184
- 8e Taniguchi R, Noto N, Tanaka S, Takahashi K, Sarkar SK, Oyama R, Abe M, Koike T, Akita M. Chem. Commun. 2021; 57: 2609
- 8f Koike T, Okumura R, Kato T, Abe M, Akita M. ChemCatChem 2023; 15: e202201311
- 9a Koike T, Akita M. Org. Chem. Front. 2016; 3: 1345
- 9b Wiles RJ, Molander GA. Isr. J. Chem. 2020; 60: 281
- 9c Yao H, Hu W, Zhang W. Molecules 2021; 26: 105
- 10a McTiernan CD, Pitre SP, Scaiano JC. ACS Catal. 2014; 4: 4034
- 10b Miyake GM, Theriot JC. Macromolecules 2014; 47: 8255
- 10c Okamoto S, Kojiyama K, Tsujioka H, Sudo A. Chem. Commun. 2016; 52: 11339
- 10d Noto N, Koike T, Akita M. Chem. Sci. 2017; 8: 6375
- 10e Iwata Y, Tanaka Y, Kubosaki S, Morita T, Yoshimi Y. Chem. Commun. 2018; 54: 1257
- 11a Lambert C, Risko C, Coropceanu V, Schelter J, Amthor S, Gruhn NE, Durivage JC, Brédas J.-L. J. Am. Chem. Soc. 2005; 127: 8508
- 11b Su Y, Wang X, Li Y, Song Y, Sui Y, Wang X. Angew. Chem. Int. Ed. 2015; 54: 1634
- 11c Uebe M, Kato T, Tanaka K, Ito A. Chem. Eur. J. 2016; 22: 18923
- 12 Tucker JW, Stephenson CR. J. Org. Chem. 2012; 77: 1617
- 13a Kirch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed. Wiley-VCH; Weinheim: 2013
- 13b Cahard D, Ma J.-A. Emerging Fluorinated Motifs: Synthesis Reactivity applications. Wiley-VCH; Weinheim: 2020
- 13c Szabó KJ, Selander N. Organofluorine Chemistry: Synthesis, Modeling, Applications. Wiley-VCH; Weinheim: 2021
- 14 Koike T, Akita M. Acc. Chem. Res. 2016; 49: 1937
- 15 Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567
- 16a Umemoto T, Gotoh Y. Bull. Chem. Soc. Jpn. 1991; 64: 2008
- 16b Duan Y, Zhou B, Lin JH, Xiao JC. Chem. Commun. 2015; 51: 13127
- 16c Hock KJ, Hommelsheim R, Mertens L, Ho J, Nguyen TV, Koenigs RM. J. Org. Chem. 2017; 82: 8220
- 17a Kreis LM, Krautwald S, Pfeiffer N, Martin RE, Carreira EM. Org. Lett. 2013; 15: 1634
- 17b Fu W, Zhu M, Zou G, Xu C, Wang Z. Synlett 2014; 25: 2513
- 17c Li L, Huang M, Liu C, Xiao JC, Chen QY, Guo Y, Zhao Z.-G. Org. Lett. 2015; 17: 4714
- 17d Yi N, Zhang H, Xu C, Deng W, Wang R, Peng D, Zeng Z, Xiang J. Org. Lett. 2016; 18: 1780
- 18 Nagib DA, MacMillan DW. C. Nature 2011; 480: 224
- 19 Song H.-X, Wang S.-M, Wang X.-Y, Han J.-B, Gao Y, Jia S.-J, Zhang C.-P. J. Fluorine Chem. 2016; 192: 131
- 20 Umemoto T, Zhang B, Zhu T, Zhou X, Zhang P, Hu S, Li Y. J. Org. Chem. 2017; 82: 7708
- 21 Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
- 22 Koike T. Chem. Rec. 2023; e202300032 DOI: 10.1002/tcr.202300032
- 23a Zhang W, Wang F, Hu J. Org. Lett. 2009; 11: 2109
- 23b Lohier JF, Glachet T, Marzag H, Gaumont AC, Reboul V. Chem. Commun. 2017; 53: 2064
- 23c Chaabouni S, Lohier J.-F, Barthelemy A.-L, Glachet T, Anselmi E, Dagousset G, Diter P, Pégot B, Magnier E, Reboul V. Chem. Eur. J. 2018; 24: 17006
- 24a Hu J, Zhang W, Wang F. Chem. Commun. 2009; 7465
- 24b Koike T, Akita M. Org. Biomol. Chem. 2019; 17: 5413
- 24c Reichel M, Karaghiosoff K. Angew. Chem. Int. Ed. 2020; 59: 12268
- 24d Colella M, Musci P, Andresini M, Spennacchio M, Degennaro L, Luisi R. Org. Biomol. Chem. 2022; 20: 4669
- 25a Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 25b Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
- 25c Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Chem. Soc. Rev. 2021; 50: 766
- 26a Prakash GK. S, Krishnamurti R, Olah GA. J. Am. Chem. Soc. 1989; 111: 393
- 26b Krishnamurti R, Bellew DR, Prakash GK. S. J. Org. Chem. 1991; 56: 984
- 27a Lam K, Markó IE. Org. Lett. 2008; 10: 2773
- 27b Lam K, Markó IE. M. Org. Lett. 2009; 11: 2752
- 27c Lam K, Markó IE. Chem. Commun. 2009; 95
- 27d Lam K, Markó IE. Tetrahedron 2009; 65: 10930
For selected reviews on organic photocatalysts, see:
For selected reports on photocatalysis by polyaromatic hydrocarbons, see:
For selected reports on CF3-homologation, see:
For selected reports on the synthesis of fluorinated sulfoximines, see:
For selected reviews on late-stage functionalization, see: