RSS-Feed abonnieren
DOI: 10.1055/a-2136-3849
Mechanosynthesis of Fullerotetrahydroquinolines by Copper-Mediated sp3 C–H Functionalization of N,N-Dimethylanilines with [60]Fullerene
We are grateful for financial support from the National Natural Science Foundation of China (21372211).
Abstract
An efficient mechanochemical copper-mediated coupling reaction of [60]fullerene with para- or meta-substituted N,N-dimethylanilines under solvent-free and ambient conditions has been developed. The present protocol provides N-methylfullerotetrahydroquinolines containing electron-withdrawing or electron-donating groups on the phenyl ring in a short reaction time and at room temperature. This reaction occurs through copper-mediated sp3 C–H functionalization of N,N-dimethylanilines under ball-milling conditions. In addition, a representative fullerotetrahydroquinoline has been applied in a perovskite solar cell device.
Key words
fullerenes - mechanochemistry - green chemistry - radical reaction - copper catalysis - solar cellSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2136-3849.
- Supporting Information
Publikationsverlauf
Eingereicht: 20. Juni 2023
Angenommen nach Revision: 24. Juli 2023
Accepted Manuscript online:
24. Juli 2023
Artikel online veröffentlicht:
07. September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Stolle A, Szuppa T, Leonhardt SE. S, Ondruschka B. Chem. Soc. Rev. 2011; 40: 2317
- 1b James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KD. M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearhouse WC, Steed JW, Waddell DC. Chem. Soc. Rev. 2012; 41: 413
- 1c Friščić T. Chem. Soc. Rev. 2012; 41: 3493
- 1d Wang G.-W. Chem. Soc. Rev. 2013; 42: 7668
- 1e Hernández JG, Bolm C. J. Org. Chem. 2017; 82: 4007
- 1f Bolm C, Hernández JG. Angew. Chem. Int. Ed. 2019; 58: 3285
- 1g Wang N.-N, Wang G.-W. Prog. Chem. 2020; 32: 1076
- 1h Wang H, Ying P, Yu J, Su W. Chin. J. Org. Chem. 2021; 41: 1897
- 1i Zhou K, Mao Y, Wu F, Lou S, Xu D. Chin. J. Org. Chem. 2021; 41: 4523
- 2a Balch AL, Winkler K. Chem. Rev. 2016; 116: 3812
- 2b Chen M, Guan R, Yang S. Adv. Sci. (Weinheim, Ger.) 2019; 6: 1800941
- 2c Harano K, Nakamura E. Acc. Chem. Res. 2019; 52: 2090
- 3a Umeyama T, Imahori H. Acc. Chem. Res. 2019; 52: 2046
- 3b Jia L, Chen M, Yang S. Mater. Chem. Front. 2020; 4: 2256
- 3c Xing Z, Li S.-H, Yang S. Small Struct. 2022; 3: 2200012
- 4a Zhu S.-E, Li F, Wang G.-W. Chem. Soc. Rev. 2013; 42: 7535
- 4b Wang G.-W. Chin. J. Chem. 2021; 39: 1797
- 4c Liu H.-W, Xu H, Shang G, Wang G.-W. Org. Lett. 2019; 21: 2625
- 4d Shao G, Niu C, Liu H.-W, Yang H, Chen J.-S, Yao Y.-R, Yang S, Wang G.-W. Org. Lett. 2023; 25: 1229
- 5a Wang G.-W, Komatsu K, Murata Y, Shiro M. Nature 1997; 387: 583
- 5b Su Y.-T, Wang G.-W. Org. Lett. 2013; 15: 3408
- 6a Liou K.-F, Cheng C.-H. Chem. Commun. 1996; 1423
- 6b Gan L, Jiang J, Zhang W, Su Y, Shi Y, Huang C, Pan J, Lü M, Wu Y. J. Org. Chem. 1998; 63: 4240
- 6c Lawson GE, Kitaygorodskiy A, Sun Y.-P. J. Org. Chem. 1999; 64: 5913
- 6d Bernstein R, Foote CS. J. Phys. Chem. A 1999; 103: 7244
- 6e Guo L.-W, Gao X, Zhang D.-W, Wu S.-H, Wu H.-M, Li Y.-J, Wilson SR, Richardson CF, Schuster DI. J. Org. Chem. 2000; 65: 3804
- 6f Nakamura Y, Suzuki M, O-kawa K, Konno T, Nishimura J. J. Org. Chem. 2005; 70: 8472
- 6g Miyake Y, Ashida Y, Nakajima K, Nishibayashi Y. Chem. Eur. J. 2014; 20: 6120
- 6h Lim SH, Ahn M, Wee K.-R, Shim JH, Choi J, Ahn D.-S, Cho DW. J. Org. Chem. 2020; 85: 12882
- 7 Wang G.-W, Chen X.-P, Cheng X. Chem. Eur. J. 2006; 12: 7246
- 8a Zhang M, Wang H.-J, Li F.-B, Zhong X.-X, Huang Y, Liu L, Liu C.-Y, Asiri AM, Alamry KA. Org. Biomol. Chem. 2018; 16: 2975
- 8b Niu C, Chen X.-P, Yin Z.-C, Wang G.-W. Eur. J. Org. Chem. 2019; 6504
- 9 Liu X, Wang X.-Y, Sun R, Huang M.-R, Liu X.-S, Wang H.-J, Li F.-B, Liu X.-F, Liu L, Liu C.-Y. Adv. Synth. Catal. 2021; 363: 4399
- 10 Gao W, Jin B, Peng R.-F, Yu Y, Shan DS, Chu S.-J. Ind. Eng. Chem. Res. 2016; 55: 10507
- 11a Wang G.-W, Li F.-B. Org. Biomol. Chem. 2005; 3: 794
- 11b Liu T.-X, Zhang Z, Liu Q, Zhang P, Jia P, Zhang Z, Zhang G. Org. Lett. 2014; 16: 1020
- 11c Jiang S.-P, Su Y.-T, Liu K.-Q, Wu Q.-H, Wang G.-W. Chem. Commun. 2015; 51: 6548
- 11d Jiang S.-P, Wu Q.-H, Wang G.-W. J. Org. Chem. 2017; 82: 10823
- 11e Xia S, Liu T.-X, Zhang P, Ma J, Liu Q, Ma N, Zhang Z, Zhang G. J. Org. Chem. 2018; 83: 862
- 11f Jiang S.-P, Liu Z, Lu W.-Q, Wang G.-W. Org. Chem. Front. 2018; 5: 1188
- 11g Teng Q, Tan Y.-C, Miao C.-B, Sun X.-Q, Yang H.-T. J. Org. Chem. 2018; 83: 15268
- 12 Liu Z, Yin Z.-C, Lu W.-Q, Niu C, Chen W, Yang S, Wang G.-W. Org. Lett. 2021; 23: 4051
- 13a Lu W.-Q, Zhou D.-B, Yin Z.-C, Liu Q.-S, Wang G.-W. Chem. Commun. 2021; 57: 7043
- 13b Lu W.-Q, Yin Z.-C, Liu Q.-S, Wang G.-W. Asian J. Org. Chem. 2022; 11: e202200045
- 14a Yan X.-X, Li B, Lin H.-S, Jin F, Niu C, Liu K.-Q, Wang G.-W, Yang S. Research (Washington, DC U. S.) 2020; 2020: 2059190
- 14b Yan X.-X, Niu C, Yin Z.-C, Lu W.-Q, Wang G.-W. Sci. Bull. (Beijing) 2022; 67: 2406
- 15 Reaction of C60 with N,N-Dimethylanilines 1a–q; General Procedure A mixture of C60 (0.05 mmol), the appropriate 1 (0.075 mmol), and Cu(OTf)2 (0.10 mmol), together with four stainless-steel balls (5 mm diameter), were introduced into a stainless-steel jar (5 mL) and milled vigorously (40 Hz) in a GT600 mixer mill at r.t. for 1 h. The mixture was then extracted with CS2 and separated by column chromatography (silica gel, CS2) to remove unreacted C60; further elution with CH2Cl2–CS2 (1:2) afforded product 2. 2a Prepared by the general procedure from C60 (35.8 mg, 0.05 mmol), 1a (12.7 mg, 0.075 mmol), and Cu(OTf)2 (36.9 mg, 0.10 mmol) as an amorphous brown solid; yield: 17.9 mg (41%) [recovered C60: 13.5 mg (38%)]. FTIR (KBr): 1599, 1585, 1504, 1334, 1308, 1290, 1107, 527 cm–1. 1H NMR (500 MHz, 1:1 CS2–CDCl2): δ = 9.29 (d, J = 2.5 Hz, 1 H), 8.34 (dd, J = 9.2 Hz, 2.5 Hz, 1 H), 7.24 (d, J = 9.2 Hz, 1 H), 4.84 (s, 2 H), 3.49 (s, 3 H). 13C NMR (126 MHz, 1:1 CS2–CDCl2): δ = (all 2 C unless indicated) 155.39, 153.68 (1 C, aryl C), 152.18, 146.71 (1 C), 146.59 (1 C), 145.43, 145.39, 145.18, 145.13, 144.69, 144.46, 144.45, 144.33, 144.31, 144.30, 143.98, 143.60, 143.56, 142.04, 141.59 (4 C), 141.09, 141.00, 140.96, 140.78, 140.60, 140.58, 139.34, 139.23 (1 C, aryl C) , 138.93, 135.44, 133.54, 126.20 (1 C, aryl C), 123.79 (1 C, aryl C), 123.62 (1 C, aryl C), 111.99 (1 C, aryl C), 67.16 [1 C, C(sp3) of C60], 64.21 (1 C), 62.85 [1 C, C(sp3) of C60], 39.08 (1 C). MALDI-TOF MS: m/z [M–] calcd for C68H8N2O2: 884.0591; found: 884.0590. UV/Vis (CHCl3): λmax nm (log ε): 259 (5.06), 318 (4.64), 433 (3.61), 697 (2.61).
For reviews, see:
For reviews, see:
For reviews, see:
For reviews, see:
For recent examples, see:
For examples, see:
For selected samples, see: