CC BY-NC-ND 4.0 · Diabetologie und Stoffwechsel 2023; 18(05): 381-393
DOI: 10.1055/a-2149-3554
Übersicht

Endpunkte zu mikrovaskulären Folgekomplikationen: klinische Endpunkte, patientenberichtete Endpunkte und Surrogatendpunkte, Methodik von Surrogatvalidierungsstudien

Endpoints for microvascular complications: clinical outcomes, patient reported outcomes and surrogate endpoints, methodology for validating surrogate parameters
1   Medicine IV, University Hospital Tübingen, Tübingen, Germany
,
Monika Kellerer
2   Zentrum für Innere Medizin, Marien Hospital Stuttgart, Stuttgart, Germany (Ringgold ID: RIN39659)
,
Dirk Müller-Wieland
3   Medicine 1, Uniklinikum Aaachen, Aachen, Germany
,
Christoph Wanner
4   Dept. Medicine 1, Universitätsklinikum Würzburg, Wurzburg, Germany (Ringgold ID: RIN27207)
,
Focke Ziemssen
5   Augenklinik, University Hospital Leipzig, Leipzig, Germany (Ringgold ID: RIN39066)
› Author Affiliations

Zusammenfassung

Für die Bewertung und die Vergleichbarkeit klinischer Langzeitstudien zur Sicherheit und/oder Effektivität verschiedener Therapieformen bei chronischen Erkrankungen sind möglichst vergleichbare und homogene vorab festgelegte Endpunkte und Surrogatparameter wichtig. Am Beispiel des Diabetes mellitus Typ 2 als chronische Erkrankung wird die Erhebung mikrovaskulärer Endpunkte und von Surrogatparametern bei der diabetesbedingten Retinopathie und Nephropathie dargelegt und diskutiert.

Abstract

For the assessment and comparability of clinical long-term studies on the safety and/or efficacy of different forms of therapy in chronic diseases, it is important that endpoints and surrogate parameters that are prespecified are as comparable and homogeneous as possible. Using the example of type 2 diabetes mellitus as a chronic disease, the collection of microvascular endpoints and surrogate parameters in diabetes-related retinopathy and nephropathy is presented and discussed.

* Für die Deutsche Diabetes Gesellschaft (DDG).




Publication History

Received: 02 July 2023

Accepted: 02 August 2023

Article published online:
12 October 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen. Allgemeine Methoden. Accessed April 30, 2023 at: www.iqwig.de/ueber-uns/methoden/methodenpapier/html
  • 2 Gemeinsamer Bundesausschuss. AMNOG – Nutzenbewertung von Arzneimitteln gemäß § 35a SGB V. Accessed April 30, 2023 at: https://www.g-ba.de/themen/arzneimittel/arzneimittel-richtlinie-anlagen/nutzenbewertung-35a/html
  • 3 Ziemssen F, Marahrens L, Roeck D. et al. Klinische Stadieneinteilung der diabetischen Retinopathie. Diabetologie 2018; 14: 550-556
  • 4 Wesemann W, Schiefer U, Bach M. Neue DIN-Normen zur Sehschärfebestimmung. Ophthalmologe 2010; 107: 821-826
  • 5 Wesemann W, Heinrich SP, Jägle H. et al. Neue DIN- und ISO-Normen zur Sehschärfebestimmung. Ophthalmologe 2020; 117: 19-26
  • 6 Schmetterer L, Scholl H, Garhöfer G. et al. Endpoints for clinical trials in ophthalmology. Prog Retin Eye Res 2023; 101160
  • 7 Told R, Baratsits M, Garhöfer G. et al. ETDRS (Early Treatment Diabetic Retinopathy Study)-Visus. Ophthalmologe 2013; 110: 960-965
  • 8 Carkeet A. Modeling logMAR visual acuity scores: effects of termination rules and alternative forced-choice options. Optom Vis Sci 2001; 78: 529-538
  • 9 Ruamviboonsuk P, Tiensuwan M, Kunawut C. et al. Repeatability of an automated Landolt C test, compared with the early treatment of diabetic retinopathy study (ETDRS) chart testing. Am J Ophthalmol 2003; 136: 662-669
  • 10 Kaiser PK. Prospective evaluation of visual acuity assessment: a comparison of snellen versus ETDRS charts in clinical practice (An AOS Thesis). Trans Am Ophthalmol Soc 2009; 107: 311-324
  • 11 Kuo HK, Kuo MT, Tiong IS. et al. Visual acuity as measured with Landolt C chart and Early Treatment of Diabetic Retinopathy Study (ETDRS) chart. Graefes Arch Clin Exp Ophthalmol 2011; 249: 601-605
  • 12 Shah N, Laidlaw DA, Shah SP. et al. Computerized repeating and averaging improve the test-retest variability of ETDRS visual acuity measurements: implications for sensitivity and specificity. Invest Ophthalmol Vis Sci 2011; 52: 9397-9402
  • 13 Bullimore MA, Fusaro RE, Adams CW. The repeatability of automated and clinician refraction. Optom Vis Sci 1998; 75: 617-622
  • 14 Johnston BC, Ebrahim S, Carrasco-Labra A. et al. Minimally important difference estimates and methods: a protocol. BMJ Open 2015; 5: e007953
  • 15 Bilbao A, Quintana JM, Escobar A. et al. Responsiveness and clinically important differences for the VF-14 index, SF-36, and visual acuity in patients undergoing cataract surgery. Ophthalmology 2009; 116: 418-424.e1
  • 16 Mangione CM, Lee PP, Pitts J. et al. Psychometric properties of the National Eye Institute Visual Function Questionnaire (NEI-VFQ). NEI-VFQ Field Test Investigators. Arch Ophthalmol 1998; 116: 1496-1504
  • 17 Hirneiss C, Neubauer AS, Gass CA. et al. Visual quality of life after macular hole surgery: outcome and predictive factors. Br J Ophthalmol 2007; 91: 481-484
  • 18 Pauleikhoff D, Scheider A, Wiedmann P. et al. Neovaskuläre altersabhängige Makuladegeneration in Deutschland. Beinträchtigung der Lebensqualität und ihre finanziellen Auswirkungen [Neovascular age-related macular degeneration in Germany. Encroachment on the quality of life and the financial implications]. Ophthalmologe 2009; 106: 242-251
  • 19 Nickels S, Schuster AK, Singer S. et al. The National Eye Institute 25-Item Visual Function Questionnaire (NEI VFQ-25) – reference data from the German population-based Gutenberg Health Study (GHS). Health Qual Life Outcomes 2017; 15: 156
  • 20 Klein R, Moss SE, Klein BE. et al. The NEI-VFQ-25 in people with long-term type 1 diabetes mellitus: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Arch Ophthalmol 2001; 119: 733-740
  • 21 Mazhar K, Varma R, Choudhury F. et al. Severity of diabetic retinopathy and health-related quality of life: the Los Angeles Latino Eye Study. Ophthalmology 2011; 118: 649-655
  • 22 Hirai FE, Tielsch JM, Klein BE. et al. Ten-year change in vision-related quality of life in type 1 diabetes: Wisconsin epidemiologic study of diabetic retinopathy. Ophthalmology 2011; 118: 353-358
  • 23 Cusick M, SanGiovanni JP, Chew EY. et al. Central visual function and the NEI-VFQ-25 near and distance activities subscale scores in people with type 1 and 2 diabetes. Am J Ophthalmol 2005; 139: 1042-1050
  • 24 Hariprasad SM, Mieler WF, Grassi M. et al. Vision-related quality of life in patients with diabetic macular oedema. Br J Ophthalmol 2008; 92: 89-92
  • 25 Mitchell P, Bressler N, Tolley K. et al. Patient-reported visual function outcomes improve after ranibizumab treatment in patients with vision impairment due to diabetic macular edema: randomized clinical trial. JAMA Ophthalmol 2013; 131: 1339-1347
  • 26 Garweg JG, Stefanickova J, Hoyng C. et al. Vision-Related Quality of Life in Patients with Diabetic Macular Edema Treated with Intravitreal Aflibercept: The AQUA Study. Ophthalmol Retina 2019; 3: 567-575
  • 27 Coyne KS, Margolis MK, Kennedy-Martin T. et al. The impact of diabetic retinopathy: perspectives from patient focus groups. Fam Pract 2004; 21: 447-453
  • 28 Scanlon PH, Loftus J, Starita C. et al. The use of weighted health-related Quality of Life scores in people with diabetic macular oedema at baseline in a randomized clinical trial. Diabet Med 2015; 32: 97-101
  • 29 Nickels S, Schuster AK, Elflein H. et al. Vision-related quality of life considering both eyes: results from the German population-based Gutenberg Health Study (GHS). Health Qual Life Outcomes 2019; 17: 98
  • 30 Fenwick EK, Pesudovs K, Rees G. et al. The impact of diabetic retinopathy: understanding the patient’s perspective. Br J Ophthalmo 2011; 95: 774-782
  • 31 Lord SR. Visual risk factors for falls in older people. Age Ageing 2006; 35: ii42-ii45
  • 32 Bach M, Wesemann W, Kolling G. et al. Photopisches Kontrastsehen. Ortliche Kontrastempfindlichkeit [Photopic contrast sensitivity. Local contrast perception]. Ophthalmologe 2008; 105: 46-48
  • 33 Brown B, Lovie-Kitchin JE. High and low contrast acuity and clinical contrast sensitivity tested in a normal population. Optom Vis Sci 1989; 66: 467-473
  • 34 Wood JM, Bullimore MA. Changes in the lower displacement limit for motion with age. Ophthalmic Physiol Opt 1995; 15: 31-36
  • 35 Stavrou EP, Wood JM. Letter contrast sensitivity changes in early diabetic retinopathy. Clin Exp Optom 2003; 86: 152-156
  • 36 Nixon DR, Flinn NA. Evaluation of contrast sensitivity and other visual function outcomes in diabetic macular edema patients following treatment switch to aflibercept from ranibizumab. Clin Ophthalmol 2018; 12: 191-197
  • 37 Okamoto F, Okamoto Y, Fukuda S. et al. Vision-related quality of life and visual function following vitrectomy for proliferative diabetic retinopathy. Am J Ophthalmol 2008; 145: 1031-1036
  • 38 Elliott DB, Sanderson K, Conkey A. The reliability of the Pelli-Robson contrast sensitivity chart. Ophthalmic Physiol Opt 1990; 10: 21-24
  • 39 Rubin GS. Reliability and sensitivity of clinical contrast sensitivity tests. Clin Vision Sci 1988; 2: 169-177
  • 40 Lovie-Kitchin JE, Brown B. Repeatability and intercorrelations of standard vision tests as a function of age. Optom Vis Sci 2000; 77: 412-420
  • 41 Chen XD, Gardner TW. Patient-Reported Outcomes Reveal Impairments Not Explained by Psychophysical Testing in Patients With Regressed PDR. Transl Vis Sci Technol 2019; 8: 11
  • 42 Levin A, Agarwal R, Herrington WG. et al. International consensus definitions of clinical trial outcomes for kidney failure: 2020. Kidney Int 2020; 98: 849-859
  • 43 Herrington WG, Staplin N, Haynes R. Kidney disease trials for the 21st century: innovations in design and conduct. Nat Rev Nephrol 2020; 16: 173-185
  • 44 Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl 2013; 3: 1–150. Accessed April 30, 2023 at: https://kdigo.org/wp-content/uploads/2017/02/KDIGO_2012_CKD_GL.pdf
  • 45 Stevens PE, Levin A. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 2013; 158: 825-830
  • 46 Levey AS, Eckardt KU, Dorman NM. et al. Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int 2020; 97: 1117-1129
  • 47 Greene T, Teng CC, Inker LA. et al. Utility and validity of estimated GFR-based surrogate time-to-event end points in CKD: a simulation study. Am J Kidney Dis 2014; 64: 867-879
  • 48 Coresh J, Turin TC, Matsushita K. et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA 2014; 311 (24) 2518-2531
  • 49 Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int 2022; 102: S1-S127
  • 50 Greene T, Ying J, Vonesh EF. et al. Performance of GFR Slope as a Surrogate End Point for Kidney Disease Progression in Clinical Trials: A Statistical Simulation. J Am Soc Nephrol 2019; 30: 1756-1769
  • 51 Inker LA, Heerspink HJL, Tighiouart H. et al. GFR Slope as a Surrogate End Point for Kidney Disease Progression in Clinical Trials: A Meta-Analysis of Treatment Effects of Randomized Controlled Trials. J Am Soc Nephrol 2019; 30: 1735-1745
  • 52 Heerspink HJL, Inker LA, Tighiouart H. et al. Change in Albuminuria and GFR Slope as Joint Surrogate End Points for Kidney Failure: Implications for Phase 2 Clinical Trials in CKD. J Am Soc Nephrol 2023;
  • 53 Collier W, Inker LA, Haaland B. et al. Evaluation of Variation in the Performance of GFR Slope as a Surrogate End Point for Kidney Failure in Clinical Trials that Differ by Severity of CKD. Clin J Am Soc Nephrol 2023; 18: 183-192
  • 54 Collins R, Bowman L, Landray M. et al. The Magic of Randomization versus the Myth of Real-World Evidence. N Engl J Med 2020; 382: 674-678
  • 55 Levey AS, Inker LA, Matsushita K. et al. GFR decline as an end point for clinical trials in CKD: a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am J Kidney Dis 2014; 64: 821-835
  • 56 Siew ED, Abdel-Kader K, Perkins AM. et al. Timing of Recovery From Moderate to Severe AKI and the Risk for Future Loss of Kidney Function. Am J Kidney Dis 2020; 75: 204-213
  • 57 Pajewski R, Gipson P, Heung M. Predictors of post-hospitalization recovery of renal function among patients with acute kidney injury requiring dialysis. Hemodial Int 2018; 22: 66-73
  • 58 Zinman B, Wanner C, Lachin JM. et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015; 373: 2117-2128
  • 59 Wanner C, Inzucchi SE, Lachin JM. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 2016; 375: 323-334
  • 60 Anker SD, Butler J, Usman MS. et al. Efficacy of empagliflozin in heart failure with preserved versus mid-range ejection fraction: a pre-specified analysis of EMPEROR-Preserved. Nat Med 2022; 28: 2512-2520
  • 61 Ferreira JP, Zannad F, Butler J. et al. Association of Empagliflozin Treatment With Albuminuria Levels in Patients With Heart Failure: A Secondary Analysis of EMPEROR-Pooled. JAMA Cardiol 2022; 7: 1148-1159
  • 62 Packer M, Butler J, Zannad F. et al. Effect of Empagliflozin on Worsening Heart Failure Events in Patients With Heart Failure and Preserved Ejection Fraction: EMPEROR-Preserved Trial. Circulation 2021; 144: 1284-1294
  • 63 Herrington WG, Staplin N. The EMPA-KIDNEY Collaborative Group; Herrington. et al. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2023; 388: 117-127
  • 64 Neal B, Perkovic V, Matthews DR. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017; 377: 2099
  • 65 Perkovic V, de Zeeuw D, Mahaffey KW. et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol 2018; 6: 691-704
  • 66 Sarraju A, Bakris G, Cannon CP. et al. Cardiovascular Effects of Canagliflozin in Relation to Renal Function and Albuminuria. J Am Coll Cardiol 2022; 80: 1721-1731
  • 67 Perkovic V, Jardine MJ, Neal B. et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 2019; 380: 2295-2306
  • 68 Wiviott SD, Raz I, Bonaca MP. et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019; 380: 347-357
  • 69 Zelniker TA, Raz I, Mosenzon O. et al. Effect of Dapagliflozin on Cardiovascular Outcomes According to Baseline Kidney Function and Albuminuria Status in Patients With Type 2 Diabetes: A Prespecified Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol 2021; 6 (07) 801-810
  • 70 Chertow GM, Correa-Rotter R, Vart P. et al. Effects of Dapagliflozin in Chronic Kidney Disease, With and Without Other Cardiovascular Medications: DAPA-CKD Trial. J Am Heart Assoc 2023; e028739
  • 71 Waijer SW, Vart P, Cherney DZI. et al. Effect of dapagliflozin on kidney and cardiovascular outcomes by baseline KDIGO risk categories: a post hoc analysis of the DAPA-CKD trial. Diabetologia 2022; 65: 1085-1097
  • 72 Heerspink HJL, Greene T, Tighiouart H. et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol 2019; 7: 128-139
  • 73 Levey AS, Gansevoort RT, Coresh J. et al. Change in Albuminuria and GFR as End Points for Clinical Trials in Early Stages of CKD: A Scientific Workshop Sponsored by the National Kidney Foundation in Collaboration With the US Food and Drug Administration and European Medicines Agency. Am J Kidney Dis 2020; 75: 84-104
  • 74 Ju A, Unruh M, Davison S. et al. Establishing a Core Outcome Measure for Fatigue in Patients on Hemodialysis: A Standardized Outcomes in Nephrology-Hemodialysis (SONG-HD) Consensus Workshop Report. Am J Kidney Dis 2018; 72: 104-112
  • 75 Voskamp PWM, van Diepen M, Evans M. et al. The impact of symptoms on health-related quality of life in elderly pre-dialysis patients: effect and importance in the EQUAL study. Nephrol Dial Transplant 2019; 34: 1707-1715
  • 76 de Boer IH, Khunti K, Sadusky T. et al. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 2022; 45: 3075-3090
  • 77 Beck RW, Maguire MG, Bressler NM. et al. Visual acuity as an outcome measure in clinical trials of retinal diseases. Ophthalmology 2007; 114: 1804-1809
  • 78 Rohrschneider K, Spittler AR, Bach M. Vergleich der Sehschärfenbestimmung mit Landolt-Ringen versus Zahlen [Comparison of visual acuity measurement with Landolt rings versus numbers]. Ophthalmologe 2019; 116: 1058-1063
  • 79 Zhu X, Sun Q, Zou H. et al. Disparities between Ophthalmologists and Patients in Estimating Quality of Life Associated with Diabetic Retinopathy. PLoS One 2015; 10: e0143678
  • 80 Puell MC, Contreras I, Pinilla I. et al. Beyond visual acuity: Patient-relevant assessment measures of visual function in retinal diseases. Eur J Ophthalmol 2021; 31: 3149-3156
  • 81 McAnany JJ, Park JC. Reduced Contrast Sensitivity is Associated With Elevated Equivalent Intrinsic Noise in Type 2 Diabetics Who Have Mild or No Retinopathy. Invest Ophthalmol Vis Sci 2018; 59: 2652-2658
  • 82 Gella L, Raman R, Pal SS. et al. Contrast sensitivity and its determinants in people with diabetes: SN-DREAMS-II, Report No 6. Eye (Lond) 2017; 31: 460-466
  • 83 Omari A, Niziol LM, Gardner TW. Reading deficits in diabetic patients treated with panretinal photocoagulation and good visual acuity. Acta Ophthalmol 2019; 97: e1013-e1018
  • 84 Edington M, Sachdev A, Morjaria R. et al. STRUCTURAL-FUNCTIONAL CORRELATION IN PATIENTS WITH DIABETIC MACULAR EDEMA. Retina 2017; 37: 881-885
  • 85 Tomkins-Netzer O, Ismetova F, Bar A. et al. Functional outcome of macular edema in different retinal disorders. Prog Retin Eye Res 2015; 48: 119-136
  • 86 Pearce E, Sivaprasad S, Chong NV. Factors affecting reading speed in patients with diabetic macular edema treated with laser photocoagulation. PLoS One 2014; 9: e105696
  • 87 Trauzettel-Klosinski S, Dietz K. IReST Study Group. Standardized assessment of reading performance: the New International Reading Speed Texts IReST. Invest Ophthalmol Vis Sci 2012; 53: 5452-5461
  • 88 Vujosevic S, Pilotto E, Bottega E. et al. Retinal fixation impairment in diabetic macular edema. Retina 2008; 28: 1443-1450
  • 89 Vujosevic S, Casciano M, Pilotto E. et al. Diabetic macular edema: fundus autofluorescence and functional correlations. Invest Ophthalmol Vis Sci 2011; 52: 442-448
  • 90 Kim YH, Yun C, Kim JT. et al. The correlation between retinal sensitivity assessed by microperimetry and contrast sensitivity in diabetic macular oedema. Br J Ophthalmol 2014; 98: 1618-1624
  • 91 Carpineto P, Ciancaglini M, Di Antonio L. et al. Fundus microperimetry patterns of fixation in type 2 diabetic patients with diffuse macular edema. Retina 2007; 27: 21-29
  • 92 Rohrschneider K, Bültmann S, Glück R. et al. Scanning laser ophthalmoscope fundus perimetry before and after laser photocoagulation for clinically significant diabetic macular edema. Am J Ophthalmol 2000; 129: 27-32
  • 93 Geller AM. A table of color distance scores for quantitative scoring of the Lanthony Desaturate color vision test. Neurotoxicol Teratol 2001; 23: 265-267
  • 94 Bowman KJ. A method for quantitative scoring of the Farnsworth Panel D-15. Acta Ophthalmol (Copenh) 1982; 60: 907-916
  • 95 Maár N, Tittl M, Stur M. et al. A new colour vision arrangement test to detect functional changes in diabetic macular oedema. Br J Ophthalmol 2001; 85: 47-51
  • 96 Klein R, Moss SE, Klein BE. et al. The NEI-VFQ-25 in people with long-term type 1 diabetes mellitus: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Arch Ophthalmol 2001; 119: 733-740
  • 97 Gillespie BW, Musch DC, Niziol LM. et al. Estimating minimally important differences for two vision-specific quality of life measures. Invest Ophthalmol Vis Sci 2014; 55: 4206-4212
  • 98 Kontodimopoulos N, Pappa E, Tadros C. et al. Dimensional Sensitivity of the 15D Multiattribute Utility Instrument in Diabetic Retinopathy. Applied Research in Quality of Life 2014; 9: 413-427
  • 99 Gabrielian A, Hariprasad SM, Jager RD. et al. The utility of visual function questionnaire in the assessment of the impact of diabetic retinopathy on vision-related quality of life. Eye (Lond) 2010; 24: 29-35
  • 100 Matza LS, Rousculp MD, Malley K. et al. The longitudinal link between visual acuity and health-related quality of life in patients with diabetic retinopathy. Health Qual Life Outcomes 2008; 6: 95
  • 101 Brose LS, Bradley C. Psychometric development of the individualized Retinopathy-Dependent Quality of Life Questionnaire (RetDQoL). Value Health 2010; 13: 119-127
  • 102 Steinberg EP, Tielsch JM, Schein OD. et al. The VF-14. An index of functional impairment in patients with cataract. Arch Ophthalmol 1994; 112: 630-638
  • 103 Linder M, Chang TS, Scott IU. et al. Validity of the visual function index (VF-14) in patients with retinal disease. Arch Ophthalmol 1999; 117: 1611-1616
  • 104 Chiang PP, Fenwick E, Marella M. et al. Validation and reliability of the VF-14 questionnaire in a German population. Invest Ophthalmol Vis Sci 2011; 52: 8919-8926
  • 105 Mozaffarieh M, Heinzl H, Sacu S. et al. Clinical outcomes of phacoemulsification cataract surgery in diabetes patients: visual function (VF-14), visual acuity and patient satisfaction. Acta Ophthalmol Scand 2005; 83: 176-183
  • 106 Lamoureux EL, Hassell JB, Keeffe JE. The impact of diabetic retinopathy on participation in daily living. Arch Ophthalmol 2004; 122: 84-88
  • 107 Mangione CM, Phillips RS, Seddon JM. et al. Development of the ‘Activities of Daily Vision Scale’. A measure of visual functional status. Med Care 1992; 30: 1111-1126
  • 108 Ware Jr JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992; 30: 473-483
  • 109 Ware Jr J, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care 1996; 34: 220-233
  • 110 Smith DH, Johnson ES, Russell A. et al. Lower visual acuity predicts worse utility values among patients with type 2 diabetes. Qual Life Res 2008; 17: 1277-1284
  • 111 Pan CW, Zhang RY, Luo N. et al. How the EQ-5D utilities are derived matters in Chinese diabetes patients: a comparison based on different EQ-5D scoring functions for China. Qual Life Res 2020; 29: 3087-3094
  • 112 Pan CW, Wang S, Wang P. et al. Diabetic retinopathy and health-related quality of life among Chinese with known type 2 diabetes mellitus. Qual Life Res 2018; 27: 2087-2093
  • 113 Clarke PM, Simon J, Cull CA. et al. Assessing the impact of visual acuity on quality of life in individuals with type 2 diabetes using the short form-36. Diabetes Care 2006; 29: 1506-1511
  • 114 Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology [Anonym]. 1991; 98 (Suppl. 05) 823-833
  • 115 Aiello LP, Odia I, Glassman AR. et al. Comparison of Early Treatment Diabetic Retinopathy Study Standard 7-Field Imaging With Ultrawide-Field Imaging for Determining Severity of Diabetic Retinopathy. JAMA Ophthalmol 2019; 137: 65-73
  • 116 Grandy S, Fox KM, SHIELD Study Group. Change in health status (EQ-5D) over 5 years among individuals with and without type 2 diabetes mellitus in the SHIELD longitudinal study. Health Qual Life Outcomes 2012; 10: 99
  • 117 Lloyd A, Nafees B, Gavriel S. et al. Health utility values associated with diabetic retinopathy. Diabet Med 2008; 25: 618-624
  • 118 Ehlers JP, Uchida A, Hu M. et al. Higher-Order Assessment of OCT in Diabetic Macular Edema from the VISTA Study: Ellipsoid Zone Dynamics and the Retinal Fluid Index. Ophthalmol Retina 2019; 3: 1056-1066
  • 119 Bressler NM, Odia I, Maguire M. et al. Association Between Change in Visual Acuity and Change in Central Subfield Thickness During Treatment of Diabetic Macular Edema in Participants Randomized to Aflibercept, Bevacizumab, or Ranibizumab: A Post Hoc Analysis of the Protocol T Randomized Clinical Trial. JAMA Ophthalmol 2019; 137: 977-985
  • 120 Hsieh YT, Alam MN, Le D. et al. OCT Angiography Biomarkers for Predicting Visual Outcomes after Ranibizumab Treatment for Diabetic Macular Edema. Ophthalmol Retina 2019; 3: 826-834
  • 121 Tsai ASH, Jordan-Yu JM. et al. Diabetic Macular Ischemia: Influence of Optical Coherence Tomography Angiography Parameters on Changes in Functional Outcomes Over One Year. Invest Ophthalmol Vis Sci 2021; 62: 9
  • 122 Ghassemi F, Fadakar K, Berijani S. et al. Quantitative assessment of vascular density in diabetic retinopathy subtypes with optical coherence tomography angiography. BMC Ophthalmol 2021; 21: 82
  • 123 Liu Z, Jiang H, Townsend JH. et al. RETINAL TISSUE PERFUSION REDUCTION BEST DISCRIMINATES EARLY STAGE DIABETIC RETINOPATHY IN PATIENTS WITH TYPE 2 DIABETES MELLITUS. Retina 2021; 41: 546-554
  • 124 Tang F, Sun Z, Wong R. et al. Relationship of intercapillary area with visual acuity in diabetes mellitus: an optical coherence tomography angiography study. Br J Ophthalmol 2018;
  • 125 Niestrata-Ortiz M, Fichna P, Stankiewicz W. et al. Enlargement of the foveal avascular zone detected by optical coherence tomography angiography in diabetic children without diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2019; 257: 689-697
  • 126 Inanc M, Tekin K, Kiziltoprak H. et al. Changes in Retinal Microcirculation Precede the Clinical Onset of Diabetic Retinopathy in Children With Type 1 Diabetes Mellitus. Am J Ophthalmol 2019; 207: 37-44
  • 127 Safi H, Anvari P, Naseri D. et al. Quantitative analysis of optical coherence tomography angiography metrics in diabetic retinopathy. Ther Adv Ophthalmol 2020; 12: 2515841419897459
  • 128 Kaiser PK. Prospective evaluation of visual acuity assessment: a comparison of snellen versus ETDRS charts in clinical practice (An AOS Thesis). Trans Am Ophthalmol Soc 2009; 107: 311-324
  • 129 González AM, Gutman T, Lopez-Vargas P. et al. Patient and Caregiver Priorities for Outcomes in CKD: A Multinational Nominal Group Technique Study. Am J Kidney Dis 2020; 76: 679-689