RSS-Feed abonnieren
DOI: 10.1055/a-2157-9100
Efficient Synthesis of Chirally Enriched 1H-Imidazo[1,2-b]pyrazole- and 4H-Imidazo[1,2-b][1,2,4]triazole-Based Bioactive Glycohybrids
Abstract
Carbohydrates, traditionally known for their energy-providing role, have gained significant attention in drug discovery due to their diverse bioactivities and stereodiversity. However, pure carbohydrate molecules often exhibit limited bioactivity and suboptimal chemical and physical characteristics. To address these challenges, bioactive scaffolds have been incorporated into carbohydrate to enhance their bioactivity and improve their overall properties. Among the various heterocyclic structural motifs known for their pharmacological properties, imidazo-pyrazole and imidazo-triazole skeleton have gained larger attention among synthetic and medicinal chemists as they possess good biological and pharmacological properties. The incorporation of these bioactive scaffolds with carbohydrates adopting developed efficient synthetic protocol to synthesize new class of imidazo-pyrazole and imidazo-triazole glycohybrid molecules is reported. The carbohydrate-derived α-iodo-2,3-dihydro-4H-pyran-4-ones have been identified as suitable precursors, which were coupled with various aminopyrazoles and aminotriazoles to obtain designed glycohybrids. Thus, various imidazo-pyrazole and imidazo-triazole based glycohybrids have been prepared efficiently in good to excellent yields. These new glycohybrids were evaluated for their anticancer activity and selected compounds were found to possess submicromolar anticancer activity against MCF-7 breast cancer cell line. These molecules could potentially be developed as new chemical entities in pharmaceutical chemistry and may encourage the use of carbohydrates in stereo-divergent synthesis and drug discovery processes.
Key words
glycohybrids - imidazo-pyrazole - imidazo-triazole - stereodiversity - anticancer - α-iodoenonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2157-9100.
- Supporting Information
Publikationsverlauf
Eingereicht: 31. Juli 2023
Angenommen nach Revision: 21. August 2023
Accepted Manuscript online:
21. August 2023
Artikel online veröffentlicht:
02. Oktober 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Walsh CT. Tetrahedron Lett. 2015; 56: 3075
- 2 Ryazanova OA, Zozulya VN, Voloshin IM, Karachevtsev VA, Makitruk VL, Stepanian SG. Spectrochim. Acta, Part A 2004; 60: 2005
- 3 Thematic issue on ‘Heterocycles in materials chemistry’: Mlostoń, G. Chem. Heterocycl. Compd. 2017, 53, issue 1
- 4 Saha B, Bhattacharyya PK. ACS Omega 2018; 3: 16753
- 5a An H, Eum S.-J, Koh M, Lee SK, Park SB. J. Org. Chem. 2008; 73: 1752
- 5b Ko SK, Jang HJ, Kim E, Park SB. Chem. Commun. 2006; 2962
- 5c Sagar R, Kim M.-J, Park SB. Tetrahedron Lett. 2008; 49: 5080
- 5d Sagar R, Park SB. J. Org. Chem. 2008; 73: 3270
- 5e Wang J, Li H, Zu L, Wang W. Org. Lett. 2006; 8: 1391
- 6 Ganapathi R, Krishan A. Cancer Res. 1980; 40: 1103
- 7 Ennis HL, Möller L, Wang JJ, Selawry OS. Biochem. Pharmacol. 1971; 20: 2639
- 8 Pelling JC, Shipman C. Biochem. Pharmacol. 1976; 25: 2377
- 9a Krishan A, Paika KD, Frei EIII. Cancer Res. 1976; 36: 138
- 9b Beer CT, Kajiwara K, Mueller GC. Biochem. Pharmacol. 1974; 23: 1115
- 10 Vanotti E, Fiorentini F, Villa M. J. Heterocycl. Chem. 1994; 31: 737
- 11 Matsumoto M, Weckbecker G, Cory JG. Cancer Commun. 1990; 2: 1
- 12 Hamdy NA, Gamal-Eldeen AM, Abdel-Aziz HA, Fakhr IM. I. Eur. J. Med. Chem. 2010; 45: 463
- 13 Huang Y, Hu X.-Q, Shen D.-P, Chen Y.-F, Xu P.-F. Mol. Divers. 2007; 11: 73
- 14 Bhongade BA, Talath S, Gadad RA, Gadad AK. J. Saudi Chem. Soc. 2016; 20: S463
- 15 Sztanke K, Pasternak K, Sidor-Wójtowicz A, Truchlińska J, Jóźwiak K. Bioorg. Med. Chem. 2006; 14: 3635
- 16a Silvestri R, Artico M, La Regina G, Di Pasquali A, De Martino G, D’Auria FD, Nencioni L, Palamara AT. J. Med. Chem. 2004; 47: 3924
- 16b Rani N, Sharma A, Singh R. Mini-Rev. Med. Chem. 2013; 13: 1812
- 17 Zhang X, Li X, Allan GF, Sbriscia T, Linton O, Lundeen SG, Sui Z. Bioorg. Med. Chem. Lett. 2007; 17: 439
- 18a Farag AM, Dawood KM. Heteroat. Chem. 1997; 8: 129
- 18b Seneci P, Nicola M, Inglesi M, Vanotti E, Resnati G. Synth. Commun. 1999; 29: 311
- 18c Sadek KU, Abdel-Hameed AM, Abdelnabi HA, Meleigy Y. Green Process. Synth. 2019; 8: 297
- 18d Langer P, Wuckelt J, Döring M, Schreiner P.R, Görls H. Eur. J. Org. Chem. 2001; 2257
- 19 Wood SG, Dalley NK, George RD, Robins RK, Revankar GR. J. Org. Chem. 1984; 49: 3534
- 20 Khidre RE, Abdel-Wahab BF, Alothman OY. J. Chem. 2014; 217596
- 21 Grosse S, Mathieu V, Pillard C, Massip S, Marchivie M, Jarry C, Bernard P, Kiss R, Guillaumet G. Eur. J. Med. Chem. 2014; 84: 718
- 22 Zhang D, Xu G, Zhao J, Wang Y, Wu X, He X, Li W, Zhang S, Yang S, Ma C, Jiang Y, Ding Q. Eur. J. Med. Chem. 2021; 225: 113724
- 23 Said MA, Eldehna WM, Nocentini A, Fahim SH, Bonardi A, Elgazar AA, Kryštof V, Soliman DH, Abdel-Aziz HA, Gratteri P, Abou-Seri SM, Supuran CT. Eur. J. Med. Chem. 2020; 189: 112019
- 24 Yu H, Jung Y, Kim H, Lee J, Oh C.-H, Yoo KH, Sim T, Hah J.-M. Bioorg. Med. Chem. Lett. 2010; 20: 3805
- 25 Williams DE, Roberge M, Van Soest R, Andersen RJ. J. Am. Chem. Soc. 2003; 125: 5296
- 26a Schaeffer HJ, Beauchamp L, de Miranda P, Elion GB, Bauer DJ, Collins P. Nature 1978; 272: 583
- 26b De Clercq E, Descamps J, De Somer P, Holý A. Science 1978; 200: 563
- 27 Searle PA, Richter RK, Molinski TF. J. Org. Chem. 1996; 61: 4073
- 28 Lee S, Lim D, Lee E, Lee N, Lee H.-g, Cechetto J, Liuzzi M, Freitas-Junior LH, Song JS, Bae MA, Oh S, Ayong L, Park SB. J. Med. Chem. 2014; 57: 7425
- 29a Kumari P, Narayana C, Dubey S, Gupta A, Sagar R. Org. Biomol. Chem. 2018; 16: 2049
- 29b Kumari P, Gupta S, Narayana C, Ahmad S, Vishnoi N, Singh S, Sagar R. New J. Chem. 2018; 42: 13985
- 29c Kumari P, Dubey S, Venkatachalapathy S, Narayana C, Gupta A, Sagar R. New J. Chem. 2019; 43: 18590
- 29d Kumari P, Mishra VS, Narayana C, Khanna A, Chakrabarty A, Sagar R. Sci. Rep. 2020; 10: 6660
- 29e Kumari P, Narayana C, Tiwari G, Sagar R. Glycohybrid molecules in medicinal chemistry: Present status and future prospective. In Carbohydrates in Drug Discovery and Development. Tiwari VK. Elsevier; Amsterdam: 2020: 451
- 30 Narayana C, Kumari P, Sagar R. Org. Lett. 2018; 20: 4240
- 31 Chen H, Xian T, Zhang W, Si W, Luo X, Zhang B, Zhang M, Wang Z, Zhang J. Carbohydr. Res. 2016; 431: 42
- 32 Saidhareddy P, Shaw AK. Tetrahedron 2017; 73: 6773
- 33 Chennaiah A, Verma AK, Vankar YD. J. Org. Chem. 2018; 83: 10535
- 34 Kumar V, Das P, Ghosal P, Shaw AK. Tetrahedron 2011; 67: 4539
- 35 Leonelli F, Capuzzi M, Calcagno V, Passacantilli P, Piancatelli G. Eur. J. Org. Chem. 2005; 2671
- 36a Hodnebrog Ø, Etminan M, Fuglestvedt JS, Marston G, Myhre G, Nielsen CJ, Shine KP, Wallington TJ. Rev. Geophys. 2013; 51: 300
- 36b Madronich S, Lee-Taylor JM, Wagner M, Kyle J, Hu Z, Landolfi R. ACS Earth Space Chem. 2021; 5: 1876
- 36c Hogue C. Chem. Eng. News 2014; 92 (35) 11
- 36d Kiwan AM. Talanta 1997; 44: 947
- 36e Maione M, Giostra U, Arduini J, Furlani F, Graziosi F, Lo Vullo E, Bonasoni P. Sci. Total Environ. 2013; 445-446: 155
- 37 Krafft ME, Cran JW. Synlett 2005; 1263
- 38 Chhikara BS, Ashraf S, Mozaffari S, St Jeans N, Mandal D, Tiwari RK, Ul-Haq Z, Parang K. Molecules 2020; 25: 2135
- 39 Schenone S, Radi M, Musumeci F, Brullo C, Botta M. Chem. Rev. 2014; 114: 7189