Synlett, Table of Contents Synlett 2023; 34(18): 2193-2196DOI: 10.1055/a-2158-9726 cluster Modern Boron Chemistry: 60 Years of the Matteson Reaction Addition of a Phosphinoboronate Ester to Borole and Borafluorene Manjur O. Akram a Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA , Christopher M. Vogels b Mount Allison University, Department of Chemistry and Biochemistry, Sackville, NB E4L 1E4, Canada , Webster L. Santos c Virginia Tech, Department of Chemistry, Blacksburg, VA 24060, USA , Stephen A. Westcott b Mount Allison University, Department of Chemistry and Biochemistry, Sackville, NB E4L 1E4, Canada , Caleb D. Martin∗ a Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Dedicated to Professor Donald Matteson and in memory of the late Professor Stephen Westcott in recognition of their contributions to organoboron chemistry. Abstract The additions of the phosphinoboronate ester Ph2PBpin to an antiaromatic borole and a borafluorene is reported. The Lewis acid/base adducts are obtained in excellent yields and represent the first P-donor adducts of Ph2PBpin. Key words Key wordspinacol diphenylphosphinoboronate - boroles - borafluorenes - antiaromaticity - Lewis acid Full Text References References and Notes 1 Paine RT, Noeth H. Chem. Rev. 1995; 95: 343 2 Gaumont AC, Carboni B. In Science of Synthesis, Vol. 6, Chap. 6.1.16. Kaufmann DE. Thieme; Stuttgart: 2005: 485 3 Bailey JA, Pringle PG. Coord. Chem. Rev. 2015; 297: 77 4 Power PP. Angew. Chem., Int. Ed. Engl. 1990; 29: 449 5 Geier SJ, Gilbert TM, Stephan DW. J. Am. Chem. Soc. 2008; 130: 12632 6 Ordyszewska A, Szynkiewicz N, Chojnacki J, Grubba R. Inorg. Chem. 2022; 61: 4361 7 Geier SJ, Gilbert TM, Stephan DW. Inorg. Chem. 2011; 50: 336 8 Daley EN, Vogels CM, Geier SJ, Decken A, Doherty S, Westcott SA. Angew. Chem. Int. Ed. 2015; 54: 2121 9 Breunig JM, Hübner A, Bolte M, Wagner M, Lerner H.-W. Organometallics 2013; 32: 6792 10 Geier SJ, Vogels CM, Mellonie NR, Daley EN, Decken A, Doherty S, Westcott SA. Chem. Eur. J. 2017; 23: 14485 11 Zhu D, Qu Z.-W, Stephan DW. Dalton Trans. 2020; 49: 901 12 Geier SJ, LaFortune JH. W, Zhu D, Kosnik SC, Macdonald CL. B, Stephan DW, Westcott SA. Dalton Trans. 2017; 46: 10876 13 Trofimova A, LaFortune JH. W, Qu Z.-W, Westcott SA, Stephan DW. Chem. Commun. 2019; 55: 12100 14 LaFortune JH. W, Trofimova A, Cummings H, Westcott SA, Stephan DW. Chem. Eur. J. 2019; 25: 12521 15 Szynkiewicz N, Ordyszewska A, Chojnacki J, Grubba R. RSC Adv. 2019; 9: 27749 16 Szynkiewicz N, Chojnacki J, Grubba R. Inorg. Chem. 2020; 59: 6332 17 Murphy MC, Trofimova A, LaFortune JH. W, Vogels CM, Geier SJ, Binder JF, Macdonald CL. B, Stephan DW, Westcott SA. Dalton Trans. 2020; 49: 5092 18 Szynkiewicz N, Ordyszewska A, Chojnacki J, Grubba R. Inorg. Chem. 2021; 60: 3794 19 Dou D, Westerhausen M, Wood GL, Duesler EN, Paine RT, Linti G, Nöth H. Chem. Ber. 1993; 126: 379 20 Linti G, Nöth H, Paine RT. Chem. Ber. 1993; 126: 875 21 Chen T, Jackson J, Jasper SA, Duesler EN, Nöth H, Paine RT. J. Organomet. Chem. 1999; 582: 25 22 Vogel U, Hoemensch P, Schwan K.-C, Timoshkin AY, Scheer M. Chem. Eur. J. 2003; 9: 515 23 Vogel U, Schwan K.-C, Hoemensch P, Scheer M. Eur. J. Inorg. Chem. 2005; 2005: 1453 24 Vogel U, Timoshkin AY, Schwan K.-C, Bodensteiner M, Scheer M. J. Organomet. Chem. 2006; 691: 4556 25 Schwan K.-C, Timoskin AY, Zabel M, Scheer M. Chem. Eur. J. 2006; 12: 4900 26 Adolf A, Zabel M, Scheer M. Eur. J. Inorg. Chem. 2007; 2007: 2136 27 Adolf A, Vogel U, Zabel M, Timoshkin AY, Scheer M. Eur. J. Inorg. Chem. 2008; 2008: 3482 28 Schwan K.-C, Adolf A, Thoms C, Zabel M, Timoshkin AY, Scheer M. Dalton Trans. 2008; 5054 29 Schwan K.-C, Vogel U, Adolf A, Zabel M, Scheer M. J. Organomet. Chem. 2009; 694: 1189 30 Tian R, Mathey F. Chem. Eur. J. 2012; 18: 11210 31 Amgoune A, Ladeira S, Miqueu K, Bourissou D. J. Am. Chem. Soc. 2012; 134: 6560 32 Kubo K, Kawanaka T, Tomioka M, Mizuta T. Organometallics 2012; 31: 2026 33 Morris LJ, Rajabi NA, Hill MS, Manners I, McMullin CL, Mahon MF. Dalton Trans. 2020; 49: 14584 34 Moussa ME, Marquardt C, Hegen O, Seidl M, Scheer M. New J. Chem. 2021; 45: 14916 35 Moussa ME, Kahoun T, Marquardt C, Ackermann MT, Hegen O, Seidl M, Timoshkin AY, Virovets AV, Bodensteiner M, Scheer M. Chem. Eur. J. 2023; 29: e202203206 36 Lehnfeld F, Hegen O, Balázs G, Timoshkin AY, Scheer M. Z. Anorg. Allg. Chem. 2023; 649: e202200265 37 Ordyszewska A, Chojnacki J, Grubba R. Dalton Trans. 2023; 52: 4161 38 Fritzemeier RG, Nekvinda J, Vogels CM, Rosenblum CA, Slebodnick C, Westcott SA, Santos WL. Angew. Chem. Int. Ed. 2020; 59: 14358 39 Braunschweig H, Kupfer T. Chem. Commun. 2011; 47: 10903 40 Barnard JH, Yruegas S, Huang K, Martin CD. Chem. Commun. 2016; 52: 9985 41 Su X, Bartholome TA, Tidwell JR, Pujol A, Yruegas S, Martinez JJ, Martin CD. Chem. Rev. 2021; 121: 4147 42 Nguyen MT, van Trang N, Dung TN, Nguyen HM. T. In Comprehensive Heterocyclic Chemistry IV, Vol. 3, Chap. 3.18. Black DS, Cossy J, Stevens CV. Elsevier; Oxford: 2022: 833 43 CCDC 2279046 and 2279047 contain the supplementary crystallographic data for compounds 1 and 2. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures 44 Berger CJ, He G, Merten C, McDonald R, Ferguson MJ, Rivard E. Inorg. Chem. 2014; 53: 1475 45 Braunschweig H, Chiu C.-W, Damme A, Ferkinghoff K, Kraft K, Radacki K, Wahler J. Organometallics 2011; 30: 3210 46 Yruegas S, Huang K, Wilson DJ. D, Dutton JL, Martin CD. Dalton Trans. 2016; 45: 9902 47 Caputo BC, Manning ZJ, Barnard JH, Martin CD. Polyhedron 2016; 114: 273 48 Biswas S, Oppel IM, Bettinger HF. Inorg. Chem. 2010; 49: 4499 49 Müller M, Maichle-Mössmer C, Bettinger HF. Angew. Chem. Int. Ed. 2014; 53: 9380 50 Zhang Z, Edkins RM, Haehnel M, Wehner M, Eichhorn A, Mailänder L, Meier M, Brand J, Brede F, Müller-Buschbaum K, Braunschweig H, Marder TB. Chem. Sci. 2015; 6: 5922 51 Yruegas S, Wilson C, Dutton JL, Martin CD. Organometallics 2017; 36: 2581 52 Laperriere LE, Yruegas S, Martin CD. Tetrahedron 2019; 75: 937 53 Adducts 1 and 2: General Procedure A solution of PPh2Bpin (0.50 mmol, 156 mg) in benzene (4 mL) was added dropwise to a solution of pentaphenyl-1H-borole or 9-phenyl-9-borafluorene (0.5 mmol) in benzene (4 mL) at rt. The solution instantly became colorless, and the mixture was stirred for 10 min at rt. The solvent was then removed in vacuo and the residue was washed with cold pentane (2 × 5 mL) and dried in vacuo. 1 Pale-yellow powder; yield: 319 mg (84%,); mp 216–219 °C. FTIR (neat): (ranked intensity) 1593 (11), 1483 (8), 1438 (9), 1340 (12), 1245 (5), 1129 (2), 1028 (13), 958 (14), 841 (4), 792 (6), 741 (7), 693 (1), 542 (10), 505 (3), 460 (15) cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.77 (d, J = 6.9 Hz, 2 H), 7.43–7.38 (m, 6 H), 7.33–7.27 (m, 3 H), 7.24–7.22 (m, 4 H), 6.90–6.85 (m, 6 H), 6.82–6.78 (m, 6 H), 6.75–6.74 (m, 4 H), 6.59 (d, J = 7.0 Hz, 4 H), 1.01 (s, 12 H). 13C{1H} NMR (101 MHz, CDCl3): δ = 154.5, 153.5, 153.4, 143.5, 140.5, 135.4 (d, J = 8.5 Hz), 135.2 (d, J = 12.8 Hz), 130.4 (d, J = 2.6 Hz), 130.3 (d, J = 2.6 Hz), 129.7, 127.7, 127.6, 127.3, 126.9, 126.8, 125.9, 125.4, 125.2, 125.0, 124.3, 86.5, 86.5, 24.6. 31P NMR (162 MHz, CDCl3): δ = –34.2. 11B NMR (128 MHz, CDCl3): δ = 30.8, –5.2. HRMS (ESI): the adduct peak was not observed in the HRMS. Anal. Calcd for C52H47B2O2P: C, 82.56; H, 6.26. Found: C 82.36, H 6.32. Single crystals of 1 for X-ray diffraction studies were grown from a CH2Cl2 solution by vapor diffusion into toluene. 2 White powder; yield: 256 mg (93%,); mp 189–191 °C. FTIR (neat): (ranked intensity) 1483 (14), 1435 (8), 1373 (12), 1348 (10), 1244 (6), 1128 (4), 1103 (13), 961 (11), 836 (5), 734 (1), 696 (3), 647 (9), 616 (15), 506 (2), 427 (7) cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.65 (d, J = 7.7 Hz, 4 H), 7.55 (d, J = 7.2 Hz, 2 H), 7.41 (td, J = 7.2, 1.6 Hz, 2 H), 7.30–7.15 (m, 13 H), 7.12 (t, J = 7.2 Hz, 2 H), 1.15 (s, 12 H). 13C{1H} NMR (101 MHz, CDCl3): δ = 153.0, 149.4, 134.6 (d, J = 7.5 Hz), 134.2, 132.9, 130.5 (d, J = 2.6 Hz), 128.3 (d, J = 9.5 Hz), 127.5, 126.5, 126.2, 125.8, 125.6, 125.6, 86.6, 86.6, 24.7. 31P NMR (162 MHz, CDCl3): δ = –35.2. 11B NMR (128 MHz, CDCl3): δ = 30.9, –9.3. HRMS (ESI): m/z [M + H] calcd for C36H36B2O2P: 553.2634; found: 553.2610. Anal. Calcd for C36H35B2O2P: C, 78.29; H, 6.39. Found: C, 78.54; H, 6.55. Single crystals for X-ray diffraction studies were grown from a CH2Cl2 solution of 2 by vapor diffusion into toluene. Supplementary Material Supplementary Material Supporting Information