Synlett 2023; 34(19): 2346-2350 DOI: 10.1055/a-2159-4847
Trimethylsilyl Azide Promoted Shono Oxidation of N ,N -Dialkyl Amides
Wenlin Luo
a
Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China
,
Ruixing Zhang
a
Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China
,
Qi Xu
b
Nursing School of Nanchang University, Nanchang, 330031, P. R. of China
,
Shengyu Zheng
c
Institute for Advanced Study, Nanchang University, Nanchang, 330031, P. R. of China
,
Junpeng Yang
a
Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China
,
Meixia Liu
a
Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China
,
a
Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China
,
Hu Cai∗
a
Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China
› Institutsangaben We thank the National Science Foundation of China (21861024) for financial support.
Abstract
An alkoxylation of N ,N -dialkyl amides by the Shono reaction has been developed that offers a simple and efficient way to access N-adjacent-carbon-substituted amides. TMSN3 plays an essential role in this transformation and permits the reaction to proceed with a broad substrate scope under mild conditions. This reaction proceeds at a lower current compared with the classical method and it affords the products in up to 91% yield. A possible mechanism is proposed based on control experiments.
Key words
trimethylsilyl azide -
Shono oxidation -
alkoxylation -
amides -
electrochemistry -
radical relay reaction
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2159-4847.
Supporting Information
Publikationsverlauf
Eingereicht: 24. Juni 2023
Angenommen nach Revision: 23. August 2023
Accepted Manuscript online: 23. August 2023
Artikel online veröffentlicht: 04. Oktober 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Seavill PW,
Wilden JD.
Green Chem. 2020; 22: 7737
1b
Kärkäs MD.
Chem. Soc. Rev. 2018; 47: 5786
1c
de Figueiredo RM,
Suppo J.-S,
Campagne J.-M.
Chem. Rev. 2016; 116: 12029
2a
Jain P,
Verma P,
Xia G,
Yu J.-Q.
Nat. Chem. 2017; 9: 140
2b
Shu X,
Zhong D,
Huang Q,
Huan L,
Huo H.
Nat. Commun. 2023; 14: 125
2c
Wang X.
Nat. Catal. 2019; 2: 98
3a
Katritzky AR,
Pernak J,
Fan WQ,
Saczewski F.
J. Org. Chem. 1991; 56: 4439
3b
Katritzky AR,
Fan WQ,
Black M,
Pernak J.
J. Org. Chem. 1992; 57: 547
3c
Bosset C,
Beucher H,
Bretel G,
Pasquier E,
Queguiner L,
Henry C,
Vos A,
Edwards JP,
Meerpoel L,
Berthelot D.
Org. Lett. 2018; 20: 6003
3d
Li L,
Zhang G,
Savateev A,
Kurpil B,
Antonietti M,
Zhao Y.
Asian J. Org. Chem. 2018; 7: 2464
3e
Chang Z,
Huang J,
Wang S,
Chen G,
Zhao H,
Wang R,
Zhao D.
Nat. Commun. 2021; 12: 4342
4a
Huff CA,
Cohen RD,
Dykstra KD,
Streckfuss E,
DiRocco DA,
Krska SW.
J. Org. Chem. 2016; 81: 6980
4b
Novaes LF. T,
Ho JS. K,
Mao K,
Liu K,
Tanwar M,
Neurock M,
Villemure E,
Terrett JA,
Lin S.
J. Am. Chem. Soc. 2022; 144: 1187
5a
Dai C,
Meschini F,
Narayanam JM. R,
Stephenson CR. J.
J. Org. Chem. 2012; 77: 4425
5b
Singh MK,
Akula HK,
Satishkumar S,
Stahl L,
Lakshman MK.
ACS Catal. 2016; 6: 1921
6a
Shimizu D,
Kurose A,
Nishikata T.
Org. Lett. 2022; 24: 7873
6b
Modak A,
Dutta U,
Kancherla R,
Maity S,
Bhadra M,
Mobin SM,
Maiti D.
Org. Lett. 2014; 16: 2602
7a
Liu L.-w,
Wang Z.-z,
Zhang H.-h,
Wang W.-s,
Zhang J.-z,
Tang Y.
Chem. Commun. 2015; 51: 9531
7b
Xia Q,
Chen W.
J. Org. Chem. 2012; 77: 9366
7c
Lv N,
Yu S,
Hong CD,
Han D.-M,
Zhang Y.
Org. Lett. 2020; 22: 9308
7d
Song R.-J,
Tu Y.-Q,
Zhu D.-Y,
Zhang F.-M,
Wang S.-H.
Chem. Commun. 2015; 51: 749
7e
Zhou J,
Ren Q,
Xu N,
Wang C,
Song S,
Chen Z,
Li J.
Green Chem. 2021; 23: 5753
7f
Aruri H,
Singh U,
Kumar M,
Sharma S,
Aithagani SK,
Gupta VK,
Mignani S,
Vishwakarma RA,
Singh PP.
J. Org. Chem. 2017; 82: 1000
7g
Luo Y,
Hu M,
Ge J,
Li B,
He L.
Org. Chem. Front. 2022; 9: 1593
8a
Chao W,
Weinreb SM.
Tetrahedron Lett. 2000; 41: 9199
8b
Huang F.-Q,
Dong X,
Qi L.-W,
Zhang B.
Tetrahedron Lett. 2016; 57: 1600
8c
Huang F.-Q,
Zhou G.-X,
Dong X,
Qi L.-W,
Zhang B.
Asian J. Org. Chem. 2016; 5: 192
9a
Shono T,
Hamaguchi H,
Matsumura Y.
J. Am. Chem. Soc. 1975; 97: 4264
9b
Shono T,
Matsumura Y,
Tsubata K.
J. Am. Chem. Soc. 1981; 103: 1172
9c
Suga S,
Okajima M,
Yoshida J.-i.
Tetrahedron Lett. 2001; 42: 2173
10a
Gao P.-S,
Weng X.-J,
Wang Z.-H,
Zheng C,
Sun B,
Chen Z.-H,
You S.-L,
Mei T.-S.
Angew. Chem. Int. Ed. 2020; 59: 15254
10b
Feng T,
Wang S,
Liu Y,
Liu S,
Qiu Y.
Angew. Chem. Int. Ed. 2022; 61: e202115178
11
Frankowski KJ,
Liu R,
Milligan GL,
Moeller KD,
Aubé J.
Angew. Chem. Int. Ed. 2015; 54: 10555
12
Kabeshov MA,
Musio B,
Murray PR. D,
Browne DL,
Ley SV.
Org. Lett. 2014; 16: 4618
13a
Jones AM,
Banks CE.
Beilstein J. Org. Chem. 2014; 10: 3056
13b
Wang F,
Rafiee M,
Stahl SS.
Angew. Chem. Int. Ed. 2018; 57: 6686
13c
Green RA,
Brown RC. D,
Pletcher D.
Org. Process Res. Dev. 2015; 19: 1424
13d
Golub T,
Becker JY.
Electrochim. Acta 2016; 205: 207
13e
Golub T,
Becker JY.
Electrochim. Acta 2015; 173: 408
13f
Golub T,
Becker JY.
J. Electrochem. Soc. 2013; 160: G3123
13g
Lee D.-S.
Tetrahedron: Asymmetry 2009; 20: 2014
14a
Kawamata Y,
Hayashi K,
Carlson E,
Shaji S,
Waldmann D,
Simmons BJ,
Edwards JT,
Zapf CW,
Saito M,
Baran PS.
J. Am. Chem. Soc. 2021; 143: 16580
14b
Alfonso-Súarez P,
Kolliopoulos AV,
Smith JP,
Banks CE,
Jones AM.
Tetrahedron Lett. 2015; 56: 6863
15a
Nakai S,
Yatabe T,
Suzuki K,
Sasano Y,
Iwabuchi Y,
Hasegawa J.-y,
Mizuno N,
Yamaguchi K.
Angew. Chem. Int. Ed. 2019; 58: 16651
15b
Ding S,
Jiao N.
Angew. Chem. 2012; 124: 9360
15c
Ganiek MA,
Becker MR,
Berionni G,
Zipse H,
Knochel P.
Chem. Eur. J. 2017; 23: 10280
15d
Lagishetti C,
Banne S,
You H,
Tang M,
Guo J,
Qi N,
He Y.
Org. Lett. 2019; 21: 5301
15e
Shen Y,
Rovis T.
J. Am. Chem. Soc. 2021; 143: 16364
15f
Ide T,
Barham JP,
Fujita M,
Kawato Y,
Egami H,
Hamashima Y.
Chem. Sci. 2018; 9: 8453
15g
Mandigma MJ. P,
Zurauskas J,
MacGregor CI,
Edwards LJ,
Shahin A,
d’Heureuse L,
Yip P,
Birch DJ. S,
Gruber T,
Heilmann J,
John MP,
Barham JP.
Chem. Sci. 2022; 13: 1912
15h
Xie J,
Shi S,
Zhang T,
Mehrkens N,
Rudolph M,
Hashmi AS. K.
Angew. Chem. Int. Ed. 2015; 54: 6046
15i
Beatty JW,
Stephenson CR. J.
Acc. Chem. Res. 2015; 48: 1474
15j
You H,
Vegi SR,
Lagishetti C,
Chen S,
Reddy RS,
Yang X,
Guo J,
Wang C,
He Y.
J. Org. Chem. 2018; 83: 4119
16
Wang Y,
Wang N,
Zhao J,
Sun M,
You H,
Fang F,
Liu Z.-Q.
ACS Catal. 2020; 10: 6603
17 General Procedure for Synthesis of 3< . 3a as an example. 1a (0.4 mmol), n Bu4 NBF4 (0.4 mmol), and CH3 CN: MeOH (5.0 mL/5.0 mL) were added into an oven-dried three-necked flask (25 mL) with a stir bar. The flask was equipped with platinum electrodes (10 × 10 × 0.3 mm3 ) as the cathode and anode. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA and air atmosphere under room temperature for 6 h. The mixture was washed with NaCl solution and then was extracted by EA. The combined organic phase was dried over anhydrous Na2 SO4 , filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with petroleum ether/ethyl acetate as the eluent (Petroleum ether (PE)/EA = 2:1 to afford the corresponding product 3a as a colorless liquid, 91% yield. 1 H NMR (400 MHz, CDCl3) δ 7.43–7.34 (m, 5 H), 4.91–4.52 (m, 2 H), 3.35–2.93 (m, 6 H); 13 C NMR (101 MHz, CDCl3 ) δ 171.35, 131.51, 129.00, 124.39, 82.42, 55.22, 33.10. HRMS (ESI): m/z calcd for C10 H13 O2 NNa [M+Na]+ : 202.0844, found: 202.0839.