Subscribe to RSS
DOI: 10.1055/a-2161-9607
Redox-Tag-Guided Radical Cation Diels–Alder Reactions: Use of Enol Ethers as Dienophiles
This work was supported in part by JSPS KAKENHI Grants Nos. 22K05450 (to Y.O.), 23KJ0870 (to H.M.), and No. 21J12556 (to K.N.), and by the TEPCO Memorial Foundation (to Y.O.).
Abstract
Although radical cation Diels–Alder reactions enable the formation of cyclohexene ring systems between electronically mismatched (both electron-rich) dienes and dienophiles, which is otherwise difficult or impossible to achieve under thermal conditions, the substrate scope has been limited. Herein, we disclose that a radical cation Diels–Alder reaction using an enol ether as an electron-rich (and therefore oxidizable) dienophile is possible through a rationally designed redox tag strategy. Electrochemical and TiO2 photochemical approaches are effective in driving the reaction, where both intermolecular and intramolecular electron transfers are the key.
Key words
redox tag - radical cation - Diels–Alder reaction - enol ether - electrochemistry - photochemistrySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2161-9607.
- Supporting Information
Publication History
Received: 14 July 2023
Accepted after revision: 29 August 2023
Accepted Manuscript online:
29 August 2023
Article published online:
23 October 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Ohmura S, Katagiri K, Kato H, Horibe T, Miyakawa S, Hasegawa J, Ishihara K. J. Am. Chem. Soc. 2023; 145: 15054
- 1b Ohmura S, Isogai R, Ishihara K. Asian J. Org. Chem. 2021; 10: 2534
- 1c Horibe T, Ohmura S, Katagiri K, Ishihara K. Asian J. Org. Chem. 2020; 9: 395
- 1d Horibe T, Ishihara K. Chem. Lett. 2020; 49: 107
- 1e Horibe T, Ohmura S, Ishihara K. J. Am. Chem. Soc. 2019; 141: 1877
- 1f Tanaka K, Kishimoto M, Tanaka Y, Kamiyama Y, Asada Y, Sukekawa M, Ohtsuka N, Suzuki T, Momiyama N, Honda K, Hoshino Y. J. Org. Chem. 2022; 87: 3319
- 1g Morse PD, Nguyen TM, Cruz CL, Nicewicz DA. Tetrahedron 2018; 74: 3266
- 1h Tan JS. J, Hirvonen V, Paton RS. Org. Lett. 2018; 20: 2821
- 1i Yu Y, Fu Y, Zhong F. Green Chem. 2018; 20: 1743
- 1j Lim HN, Parker KA. J. Org. Chem. 2014; 79: 919
- 1k Moore JC, Davies ES, Walsh DA, Sharma P, Moses JE. Chem. Commun. 2014; 50: 12523
- 2a Bellville DJ, Wirth DW, Bauld NL. J. Am. Chem. Soc. 1981; 103: 718
- 2b Reynolds DW, Bauld NL. Tetrahedron 1986; 42: 6189
- 2c Bauld NL, Bellville DJ, Harirchian B, Lorenz KT, Pabon RA. Jr, Reynolds DW, Wirth DD, Chiou HS, Marsh BK. Acc. Chem. Res. 1987; 20: 371
- 2d Bauld NL. Tetrahedron 1989; 45: 5307
- 3a Lin S, Ischay MA, Fry CG, Yoon TP. J. Am. Chem. Soc. 2011; 133: 19350
- 3b Lin S, Padilla CE, Ischay MA, Yoon TP. Tetrahedron Lett. 2012; 53: 3073
- 3c Lin S, Lies SD, Gravatt CS, Yoon TP. Org. Lett. 2017; 19: 368
- 4a Silvi M, Melchiorre P. Nature 2018; 554: 41
- 4b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 4c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 4d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 4e Kärkäs MD, Porco JA. Jr, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
- 4f Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 5a Stevenson SM, Shores MP, Ferreira EM. Angew. Chem. Int. Ed. 2015; 54: 6506
- 5b Higgins RF, Fatur SM, Shepard SG, Stevenson SM, Boston DJ, Ferreira EM, Damrauer NH, Rappé AK, Shores MP. J. Am. Chem. Soc. 2016; 138: 5451
- 5c Alpers D, Gallhof M, Stark CB. W, Brasholz M. Chem. Commun. 2016; 52: 1025
- 5d Zhao Y, Antonietti M. Angew. Chem. Int. Ed. 2017; 56: 9336
- 5e Stevenson SM, Higgins RF, Shores MP, Ferreira EM. Chem. Sci. 2017; 8: 654
- 5f Yang Y, Liu Q, Zhang L, Yu H, Dang Z. Organometallics 2017; 36: 687
- 5g Shin JH, Seong EY, Mun HJ, Jang YJ, Kang EJ. Org. Lett. 2018; 20: 5872
- 5h Tanaka K, Kishimoto M, Sukekawa M, Hoshino Y, Honda K. Tetrahedron Lett. 2018; 59: 3361
- 5i Farney EP, Chapman SJ, Swords WB, Torelli MD, Hamers RJ, Yoon TP. J. Am. Chem. Soc. 2019; 141: 6385
- 5j Huber N, Li R, Ferguson CT. J, Gehrig DW, Ramanan C, Blom PW. M, Landfester K, Zhang KA. I. Catal. Sci. Technol. 2020; 10: 2092
- 5k Tang M, Cameron L, Poland EM, Yu L.-J, Moggach SA, Fuller RO, Huang H, Sun J, Thickett SC, Massi M, Coote ML, Ho CC, Bissember AC. Inorg. Chem. 2022; 61: 1888
- 6a Okada Y. Electrochemistry 2020; 88: 497
- 6b Okada Y, Chiba K. Chem. Rev. 2018; 118: 4592
- 7a Adachi S, Horiguchi G, Kamiya H, Okada Y. Eur. J. Org. Chem. 2022; e202201207
- 7b Hashimoto Y, Horiguchi G, Kamiya H, Okada Y. Chem. Eur. J. 2022; 28: e202202018
- 7c Nakayama K, Kamiya H, Okada Y. Beilstein J. Org. Chem. 2022; 18: 1100
- 7d Maeta N, Kamiya H, Okada Y. J. Org. Chem. 2020; 85: 6551
- 7e Maeta N, Kamiya H, Okada Y. Org. Lett. 2019; 21: 8519
- 7f Nakayama K, Maeta N, Horiguchi G, Kamiya H, Okada Y. Org. Lett. 2019; 21: 2246
- 7g Okada Y, Maeta N, Nakayama K, Kamiya H. J. Org. Chem. 2018; 83: 4948
- 8a Shida N, Imada Y, Okada Y, Chiba K. Eur. J. Org. Chem. 2020; 570
- 8b Imada Y, Yamaguchi Y, Shida N, Okada Y, Chiba K. Chem. Commun. 2017; 53: 3960
- 9a Okada Y. J. Org. Chem. 2019; 84: 1882
- 9b Okada Y, Yamaguchi Y, Ozaki A, Chiba K. Chem. Sci. 2016; 7: 6387
- 9c Okada Y, Nishimoto A, Akaba R, Chiba K. J. Org. Chem. 2011; 76: 3470
- 10a Feldberg SW, Jeftic L. J. Phys. Chem. 1972; 76: 2439
- 10b Nelsen SF, Akaba R. J. Am. Chem. Soc. 1981; 103: 2096
- 10c Nelsen SF, Kapp DL, Akaba R, Evans DH. J. Am. Chem. Soc. 1986; 108: 6863
- 10d Kabe Y, Takata T, Ueno K, Ando W. J. Am. Chem. Soc. 1984; 106: 8174
- 10e Tsuchiya M, Akaba R, Aihara S, Sakuragi H, Tokumaru K. Chem. Lett. 1986; 10: 1727
- 10f Okada Y, Akaba R, Chiba K. Tetrahedron Lett. 2009; 50: 5413
- 10g Nakayama K, Kamiya H, Okada Y. J. Electrochem. Soc. 2020; 167: 155518
- 10h Francke R, Little RD. ChemElectroChem 2019; 6: 4373
- 10i Roesel AF, Ugandi M, Huyen NT. T, Májek M, Broese T, Roemelt M, Francke R. J. Org. Chem. 2020; 85: 8029
- 11 Okada Y. Chem. Rec. 2021; 21: 2223
- 12 Electrochemical Radical Cation Diels–Alder Reactions; General Procedure The appropriate enol ether (0.20 mmol) and 2,3-dimethylbuta-1,3-diene (45.0 μL, 0.40 mmol) were added with stirring to a solution of 1.0 M solution of LiClO4 in CH3NO2 (20 mL) at r.t. The mixture was then electrolyzed with stirring at 1.2 V vs Ag/AgCl using carbon felt electrodes (10 × 10 mm) in an undivided cell under Ar. The solution was then diluted with H2O and extracted with EtOAc. The combined organic layers were dried (Na2SO4), filtered, and concentrated in vacuo. The reported yields were determined by GC/MS analysis. The residue was purified by column chromatography [silica gel, 0.40 mmol scale (2 batches), hexane–EtOAc (24:1)]. All the reactions gave the corresponding cycloadducts as cis/trans mixtures. 1-Methoxy-4-[2-(6-methoxy-3,4-dimethylcyclohex-3-en-1-yl)ethyl]benzene (7) Colorless oil; yield: 27.0 mg (0.0985 mmol, 49%). 1H NMR (600 MHz, CDCl3): δ = (major) 7.11 (d, J = 7.2 Hz, 2 H), 6.83–6.81 (m, 2 H), 3.78 (s, 3 H), 3.42 (dt, J = 4.6, 2.3 Hz, 1 H), 3.31 (s, 3 H), 2.68–2.48 (m, 2 H), 2.31–2.20 (m, 1 H), 2.13–2.04 (m, 1 H), 1.96–1.91 (m, 2 H), 1.77–1.74 (m, 2 H), 1.61–1.36 (m, 7 H); (minor): 7.11 (d, J = 7.2 Hz, 2 H), 6.83–6.81 (m, 2 H), 3.78 (s, 3 H), 3.35 (s, 3 H), 3.15 (dt, J = 7.9, 5.5 Hz, 1 H), 2.68–2.48 (m, 2 H), 2.31–2.20 (m, 1 H), 2.13–2.04 (m, 1 H), 1.96–1.91 (m, 2 H), 1.77–1.74 (m, 2 H), 1.61–1.36 (m, 7 H). 13C{1H} NMR (150 MHz, CDCl3): δ = (major) 157.8, 135.1, 129.4, 124.9, 122.4, 113.8, 78.4, 56.5, 55.4, 36.6, 36.1, 35.1, 34.5, 32.8, 19.1, 18.9; (minor) 157.8, 135.2, 129.4, 124.7, 122.7, 113.9, 80.3, 57.0, 55.4, 38.0, 36.0, 34.2, 32.5, 32.1, 19.2, 19.1. HRMS (DART): m/z [M + H]+ calcd for C18H27O2: 275.2006; found: 275.2005.
- 13 TiO2 Photochemical Radical Cation Diels–Alder Reactions; General Procedure TiO2 nanoparticles (100 mg) were added to a solution of the appropriate enol ether (0.20 mmol) and 2,3-dimethylbuta-1,3-diene (45.0 μL, 0.40 mmol) in a 1.0 M solution of LiClO4 in CH3NO2 (4.0 mL). The mixture was stirred at r.t. 5 cm away from of a 15 W UV lamp (λ = 365 nm) under air. The solution was then diluted with H2O and extracted with EtOAc. The combined organic layers were dried (Na2SO4), filtered, and concentrated in vacuo. The reported yields were determined by GC/MS analysis. The residue was purified by column chromatography [silica gel, 0.40 mmol scale (2 batches), hexane–EtOAc (24:1)]. All the reactions gave the corresponding cycloadducts as cis/trans mixtures.
For selected examples, see:
For selected reviews, see:
For selected reviews, see:
For recent examples, see: