Osteologie 2023; 32(04): 243-250
DOI: 10.1055/a-2164-7792
Review

Regulation des Calciumhaushaltes

Regulation of Calcium Metabolism
Julius Andreas Erich Hartmann
1   Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Gottingen, Germany
,
Heide Siggelkow
1   Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Gottingen, Germany
2   MVZ Endokrinologikum Göttingen, Endokrinologikum-Gruppe, Hamburg, Germany
› Author Affiliations

Zusammenfassung

Ziel Der Calciummetabolismus wird in einem engen physiologischen Fenster gesteuert. Die beteiligten Organsysteme und die verschiedenen Regulationsmechanismen werden in dieser Arbeit vorgestellt.

Methoden Es handelt sich um eine Übersichtsarbeit aus der vorliegenden Literatur.

Ergebnisse Von den täglich aufgenommen 1000 mg Calcium kommt es zu einer Nettoaufnahme von ca. 200 mg pro Tag. Die Calciumregulation erfolgt über die Resorption im Darm, die Rückresorption oder Ausscheidung über die Nieren und die Freisetzung vom oder den Einbau in den Knochen. Veränderungen im Serumspiegel wirken über den Calcium-Sensing Rezeptor an der Nebenschilddrüsenzelle auf die Parathormonsekretion und an der Niere direkt über die Transportproteine auf die Rückresorption von Calcium. Parathormon reguliert die Freisetzung von Calcium auf den Knochen, die Calciumausscheidung in der Niere und die Stimulation der Vitamin D Synthese. Vitamin D wiederum erhöht die Calciumaufnahme aus dem Darm. Mit diesen komplexen Regulationsmechanismen gelingt es dem Körper den Calciumspiegel in dem engen Konzentrationsbereich zu halten

Schlußfolgerung Die Regulationsvorgänge für den Erhalt des Calciumspiegels sind komplex und viele hormonelle Veränderungen können beteiligt sein. Eine Störung des Calciummetabolismus kann deshalb nicht allein am Calciumwert diagnostiziert werden, da der Wert sich erst ganz spät ändert. Für die Diagnosestellung einer Calciumstoffwechselstörung kann deshalb die Bestimmung von Vitamin D, 1,25D, PTH und der Calciumausscheidung, sowie von Knochenumsatzparametern und der Knochendichte erforderlich sein.

Abstract

Aim Calcium metabolism is controlled within a narrow phyisological window. The organ systems involved and the different regulatory mechanisms are presented in this article.

Methods This is a review from the available literature.

Results Of the 1000 mg of calcium consumed daily, there is a net intake of about 200 mg per day. Calcium regulation takes place via absorption in the intestine, reabsorption or excretion via the kidneys and release from or incorporation into the bone. Changes in serum levels have an effect on parathyroid hormone secretion via the calcium-sensing receptor on the parathyroid cell and on the kidneys directly on the reabsorption of calcium via the transport proteins. Parathyroid hormone regulates the release of calcium of the bones, calcium excretion in the kidneys and the stimulation of vitamin D synthesis. Vitamin D, in turn, increases calcium absorption from the intestines. With these complex regulatory mechanisms, the body manages to keep the calcium level in the narrow concentration range.

Conclusion The regulatory processes for the maintenance of calcium levels are complex and many hormonal changes can be involved. A disturbance of the calcium metabolism can therefore not be diagnosed solely on the basis of the calcium value, since the value changes very late. For the diagnosis of a calcium metabolism disorder, the determination of vitamin D, 1,25D, PTH and calcium excretion, as well as bone turnover parameters and bone density may therefore be necessary.



Publication History

Received: 27 July 2023

Accepted: 31 August 2023

Article published online:
05 October 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 McLean FC, Hastings AB. The state of calcium in the fluids of the body. J Biol Chem 1934; 105
  • 2 Walser M. Ion association. VI. Interactions between calcium, magnesium, inorganic phosphate, citrate and protein in normal human plasma. J Clin Invest 1961; 40: 723-730
  • 3 Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4: 517-529
  • 4 Robertson WG, Marshall RW. Calcium measurements in serum and plasma--total and ionized. CRC Crit Rev Clin Lab Sci 1979; 11: 271-304
  • 5 Koeppen BM, Stanton BA. Renal Physiology. 6th edition ed. Philadelphia, PA: Elsevier; 2018. 2018. 248
  • 6 Ely MR, Kenefick RW, Cheuvront SN, Chinevere TD, Lacher CP, Lukaski HC. et al. Surface contamination artificially elevates initial sweat mineral concentrations. J Appl Physiol (1985) 2011; 110: 1534-140
  • 7 Peacock M. Hypoparathyroidism and the Kidney. Endocrinol Metab Clin North Am 2018; 47: 839-53.
  • 8 Matikainen N, Pekkarinen T, Ryhänen EM, Schalin-Jäntti C. Physiology of Calcium Homeostasis: An Overview. Endocrinol Metab Clin North Am 2021; 50: 575-90.
  • 9 Litwack G. Chapter 9 – Calcium-regulating hormones: vitamin D, parathyroid hormone, calcitonin, and fibroblast growth factor 23. In: Litwack G, editor. Hormones (Fourth Edition). Academic Press; 2022: 213-248
  • 10 Greupner T, Schneider I, Hahn A. Calcium Bioavailability from Mineral Waters with Different Mineralization in Comparison to Milk and a Supplement. J Am Coll Nutr 2017; 36: 386-90.
  • 11 German Nutrition Society B, Germany. New Reference Values for Calcium. Annals of Nutrition and Metabolism 2013; 63: 186-192
  • 12 Rizzoli R, Bischoff-Ferrari H, Dawson-Hughes B, Weaver C. Nutrition and bone health in women after the menopause. Womens Health (Lond) 2014; 10: 599-608
  • 13 Nordin BE, Need AG, Morris HA, Horowitz M, Robertson WG. Evidence for a renal calcium leak in postmenopausal women. J Clin Endocrinol Metab 1991; 72: 401-407
  • 14 Nordin BE, WIshart JM, Clifton PM, McArthur R, Scopacasa F, Need AG. et al. A longitudinal study of bone-related biochemical changes at the menopause. Clin Endocrinol (Oxf) 2004; 61: 123-130
  • 15 Prince RL, Dick I, Devine A, Price RI, Gutteridge DH, Kerr D. et al. The effects of menopause and age on calcitropic hormones: a cross-sectional study of 655 healthy women aged 35 to 90. J Bone Miner Res 1995; 10: 835-842
  • 16 Winzenberg T, Shaw K, Fryer J, Jones G. Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. Bmj. 2006; 333: 775
  • 17 Moschonis G, Katsaroli I, Lyritis GP, Manios Y. The effects of a 30-month dietary intervention on bone mineral density: the Postmenopausal Health Study. Br J Nutr 2010; 104: 100-107
  • 18 Bolland MJ, Avenell A, Baron JA, Grey A, MacLennan GS, Gamble GD. et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. Bmj. 2010; 341: c3691
  • 19 Pansu D, Bellaton C, Bronner F. Effect of Ca intake on saturable and nonsaturable components of duodenal Ca transport. Am J Physiol 1981; 240: G32-G37
  • 20 Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y. et al. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+absorption between enterocytes. Mol Biol Cell 2008; 19: 1912-1921
  • 21 Deroisy R, Zartarian M, Meurmans L, Nelissenne N, Micheletti MC, Albert A. et al. Acute changes in serum calcium and parathyroid hormone circulating levels induced by the oral intake of five currently available calcium salts in healthy male volunteers. Clin Rheumatol 1997; 16: 249-253
  • 22 Bakaloudi DR, Halloran A, Rippin HL, Oikonomidou AC, Dardavesis TI, Williams J. et al. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin Nutr 2021; 40: 3503-21.
  • 23 Thong BKS, Ima-Nirwana S, Chin KY. Proton Pump Inhibitors and Fracture Risk: A Review of Current Evidence and Mechanisms Involved. Int J Environ Res Public Health. 2019 16.
  • 24 Sarko J. Bone and Mineral Metabolism. Emergency Medicine Clinics of North America 2005; 23: 703-721
  • 25 The Principles and practice of nephrology. 2. ed. St. Louis, Mo: Mosby; 1995. 1995. 1094
  • 26 Blaine J, Chonchol M, Levi M. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis. CJASN 2015; 10: 1257-1272
  • 27 Friedman P. Renal Calcium Transport: Sites and Insights. Physiology. 1988; 3: 17-20
  • 28 Brown EM, Pollak M, Seidman CE, Seidman JG, Chou YH, Riccardi D. et al. Calcium-ion-sensing cell-surface receptors. N Engl J Med 1995; 333: 234-240
  • 29 Heaney RP, Recker RR, Saville PD. Nutrition classics. The Journal of Laboratory and Clinical Medicine, Volume 92, 1978: Menopausal changes in calcium balance performance. Nutr Rev 1983; 41: 86-89
  • 30 Van Cromphaut SJ, Rummens K, Stockmans I, Van Herck E, Dijcks FA, Ederveen AG. et al. Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms. J Bone Miner Res 2003; 18: 1725-1736
  • 31 Gennari C, Agnusdei D, Nardi P, Civitelli R. Estrogen preserves a normal intestinal responsiveness to 1,25-dihydroxyvitamin D3 in oophorectomized women. J Clin Endocrinol Metab 1990; 71: 1288-1293
  • 32 Eastell R, Yergey AL, Vieira NE, Cedel SL, Kumar R, Riggs BL. Interrelationship among vitamin D metabolism, true calcium absorption, parathyroid function, and age in women: evidence of an age-related intestinal resistance to 1,25-dihydroxyvitamin D action. J Bone Miner Res 1991; 6: 125-132
  • 33 Holick MF, Matsuoka LY, Wortsman J. Age, vitamin D, and solar ultraviolet. Lancet. 1989; 2: 1104-1105
  • 34 Barry DW, Kohrt WM. Acute effects of 2 hours of moderate-intensity cycling on serum parathyroid hormone and calcium. Calcif Tissue Int 2007; 80: 359-365
  • 35 Kohrt WM, Wherry SJ, Wolfe P, Sherk VD, Wellington T, Swanson CM. et al. Maintenance of Serum Ionized Calcium During Exercise Attenuates Parathyroid Hormone and Bone Resorption Responses. J Bone Miner Res 2018; 33: 1326-1334
  • 36 Copp DH, Cheney B. Calcitonin-a hormone from the parathyroid which lowers the calcium-level of the blood. Nature. 1962; 193: 381-382
  • 37 Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem 2018; 55: 308-327
  • 38 Cohn DV, Macgregor RR. The Biosynthesis, Intracellular Processing, and Secretion of Parathormone. Endocr Rev 1981; 2: 1-26
  • 39 Physiologie. 9 ed. Stuttgart: Georg Thieme Verlag; 2019. 2019.
  • 40 Khan AA, Guyatt G, Ali DS, Bilezikian JP, Collins MT, Dandurand K. et al. Management of Hypoparathyroidism. J Bone Miner Res 2022; 37: 2663-2677
  • 41 Suva LJ, Winslow GA, Wettenhall RE, Hammonds RG, Moseley JM, Diefenbach-Jagger H. et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science. 1987; 237: 893-896
  • 42 McCauley LK, Martin TJ. Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J Bone Miner Res 2012; 27: 1231-1239
  • 43 Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113: 561-568
  • 44 Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 2001; 98: 6500-6505
  • 45 Holick MF, Schnoes HK, DeLuca HF. Identification of 1,25-dihydroxycholecalciferol, a form of vitamin D3 metabolically active in the intestine. Proc Natl Acad Sci U S A 1971; 68: 803-804
  • 46 Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol 2005; 289: F8-F28
  • 47 Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH. et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 1998; 13: 325-349
  • 48 Zierold C, Mings JA, DeLuca HF. Regulation of 25-hydroxyvitamin D3-24-hydroxylase mRNA by 1,25-dihydroxyvitamin D3 and parathyroid hormone. J Cell Biochem 2003; 88: 234-237
  • 49 Kim S, Yamazaki M, Zella LA, Shevde NK, Pike JW. Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol 2006; 26: 6469-6486