Subscribe to RSS
DOI: 10.1055/a-2181-1026
Therapien zur Verbesserung der Schlaganfall-Regeneration – Ergebnisse klinischer Studien im wissenschaftlichen Kontext
Therapies for the Improvement of Stroke Recovery – Assessment of Clinical Trial ResultsZusammenfassung
Zu den Erholungsprozessen nach einem Schlaganfall gehören die Wiederherstellung oder Kompensation von Funktionen, die ursprünglich verloren gingen oder nach einer Verletzung neu erworben wurden. Therapeutische Eingriffe können diese Prozesse entweder direkt verbessern oder Prozesse hemmen, die die Regeneration behindern. Zahlreiche experimentelle Studien ließen auf eine große Chance für solche Behandlungen hoffen, doch die Ergebnisse der jüngsten großen klinischen Studien mit Neuromodulatoren wie Dopamin und Fluoxetin waren leider enttäuschend. Die Gründe dafür sind vielfältig und betreffen die Übertragung der Ergebnisse aus Tiermodellen auf den Menschen. Diese Translationsblockade wird durch Unterschiede zwischen Tier und Mensch in Bezug auf den genetischen und epigenetischen Hintergrund, die Größe und Anatomie des Gehirns, die zerebrale Gefäßanatomie, das Immunsystem sowie die klinische Funktion und das Verhalten definiert. Zu den Rückwärtsblockaden gehört die inkompatible Anpassung von Zielen und Ergebnissen in klinischen Studien im Hinblick auf frühere präklinische Erkenntnisse. So variiert beispielsweise das Design der klinischen Regenerationsstudien stark und war durch die Auswahl unterschiedlicher klinischer Endpunkte, die Einbeziehung eines breiten Spektrums von Schlaganfall-Subtypen und klinischen Syndromen sowie durch unterschiedliche Zeitfenster für den Behandlungsbeginn nach Infarktbeginn gekennzeichnet. Die vorliegende Übersichtsarbeit diskutiert diese Aspekte anhand der Ergebnisse der letzten Schlaganfall-Regenerationsstudien mit dem Ziel, einen Beitrag zur Entwicklung einer Therapie zu leisten, die das funktionelle Ergebnis eines chronischen Schlaganfallpatienten verbessert.
Abstract
Recovery processes after stroke include restoration or compensation of function initially lost or newly acquired after injury. Therapeutic interventions can either directly improve these processes and/or inhibit processes that impede regeneration. Numerous experimental studies suggested a great opportunity for such treatments, but the results from recent large clinical trials with neuromodulators such as dopamine and fluoxetine have been rather disappointing. The reasons for this are manifold and involve the extrapolation of results from animal models to humans. Given the differences between animals and humans in genetic and epigenetic background, brain size and anatomy, cerebral vascular anatomy, immune system, as well as clinical function, and behavior, direct extrapolation is unlikely to work. Backward blockades include the incompatible adaption of clinical trial objectives and outcomes in clinical trials with regard to previous preclinical findings. For example, the clinical recovery trial design widely varies and has been characterized by the selection of different clinical endpoints, the inclusion a wide spectrum of stroke subtypes and clinical syndromes, and different time windows for treatment initiation after onset of infarction. This review will discuss these aspects based on the results of the recent stroke recovery trials with the aim to contributing to the development of a therapy that improves the functional outcome of a chronic stroke patient.
Key words
chronic stroke - recovery - regeneration - amphetamine - dopamine - serotonin reuptake inhibitorPublication History
Received: 14 December 2022
Accepted: 14 September 2023
Article published online:
11 December 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
Literatur
- 1 Levin MF, Kleim JA, Wolf SL. What do motor „recovery“ and „compensationg“ mean in patients following stroke?. Neurorehabil Neural Repair 2009; 23: 313-319 Im Internet: https://pubmed.ncbi.nlm.nih.gov/19118128/
- 2 Sommer CJ, Schäbitz WR. Fostering Poststroke Recovery: Towards Combination Treatments. Stroke 2017; 48: 1112-1119 Im Internet https://pubmed.ncbi.nlm.nih.gov/28265015/
- 3 Wieters F, Aswendt M. Structural integrity and remodeling underlying functional recovery after stroke. Neural Regen Res 2021; 16: 1423-1424 Im Internet https://pubmed.ncbi.nlm.nih.gov/33318437/
- 4 Minnerup J, Strecker JK, Wachsmuth L. et al. Defining mechanisms of neural plasticity after brainstem ischemia in rats. Ann Neurol 2018; 83: 1003-1015 Im Internet: https://pubmed.ncbi.nlm.nih.gov/29665155/
- 5 Regenhardt RW, Takase H, Lo EH. et al. Translating concepts of neural repair after stroke: Structural and functional targets for recovery. Restor Neurol Neurosci 2020; 38: 67-92 Im Internet https://pubmed.ncbi.nlm.nih.gov/31929129/
- 6 Sommer CJ, Schäbitz WR. Principles and requirements for stroke recovery science. J Cereb Blood Flow Metab. 2020 Im Internet: https://pubmed.ncbi.nlm.nih.gov/33175596/
- 7 Wang WJ, Zhong YB, Zhao JJ. et al. Transcranial pulse current stimulation improves the locomotor function in a rat model of stroke. Neural Regen Res 2021; 16: 1229-1234 Im Internet: https://pubmed.ncbi.nlm.nih.gov/33318399/
- 8 Yeganeh Doost M, Herman B, Denis A. et al. Bimanual motor skill learning and robotic assistance for chronic hemiparetic stroke: a randomized controlled trial. Neural Regen Res 2021; 16: 1566 Im Internet: https://pubmed.ncbi.nlm.nih.gov/33433485/
- 9 Rogalewski A, Schäbitz WR. Stroke recovery enhancing therapies: lessons from recent clinical trials. Neural Regen Res 2022; 17: 717-720 Im Internet: https://pubmed.ncbi.nlm.nih.gov/34472456/
- 10 Ford GA, Bhakta BB, Cozens A. et al. Safety and efficacy of co-careldopa as an add-on therapy to occupational and physical therapy in patients after stroke (DARS): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2019; 18: 530-538 Im Internet https://pubmed.ncbi.nlm.nih.gov/31122493/
- 11 Goldstein LB, Lennihan L, Rabadi MJ. et al. Effect of Dextroamphetamine on Poststroke Motor Recovery: A Randomized Clinical Trial. JAMA Neurol 2018; 75: 1494-1501 Im Internet https://pubmed.ncbi.nlm.nih.gov/30167675/
- 12 Chollet F, Tardy J, Albucher JF. et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): A randomised placebo-controlled trial. Lancet Neurol 2011; 10: 123-130 Im Internet: https://pubmed.ncbi.nlm.nih.gov/21216670/
- 13 Dennis M, Mead G, Forbes J. et al. Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial. Lancet 2019; 393: 265-274 Im Internet: https://pubmed.ncbi.nlm.nih.gov/30528472/
- 14 Lundström E, Isaksson E, Näsman P. et al. Safety and efficacy of fluoxetine on functional recovery after acute stroke (EFFECTS): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2020; 19: 661-669 Im Internet https://pubmed.ncbi.nlm.nih.gov/32702335/
- 15 Hankey GJ, Hackett ML, Almeida OP. et al. Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2020; 19: 651-660 Im Internet: https://pubmed.ncbi.nlm.nih.gov/32702334/
- 16 Pollock A, Baer G, Campbell P. et al. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev 2014; 2014 Im Internet: https://pubmed.ncbi.nlm.nih.gov/24756870/
- 17 Schmidt A, Wellmann J, Schilling M. et al. Meta-analysis of the efficacy of different training strategies in animal models of ischemic stroke. Stroke 2014; 45: 239-247 Im Internet https://pubmed.ncbi.nlm.nih.gov/24178915/
- 18 Schneider A, Rogalewski A, Wafzig O. et al. Forced arm use is superior to voluntary training for motor recovery and brain plasticity after cortical ischemia in rats. Exp Transl Stroke Med 2014; 6: 3 https://pubmed.ncbi.nlm.nih.gov/24528872/
- 19 Wolf SL, Winstein CJ, Miller JP. et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: The EXCITE randomized clinical trial. J Am Med Assoc 2006; 296: 2095-2104 Im Internet: https://pubmed.ncbi.nlm.nih.gov/17077374/
- 20 Wolf SL, Winstein CJ, Miller JP. et al. Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurol 2008; 7: 33-40 Im Internet: https://pubmed.ncbi.nlm.nih.gov/18077218/
- 21 Corbetta D, Sirtori V, Castellini G. et al. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane database Syst Rev 2015; 2015: CD004433 https://pubmed.ncbi.nlm.nih.gov/26446577/
- 22 Müller HD, Hanumanthiah KM, Diederich K. et al. Brain-derived neurotrophic factor but not forced arm use improves long-term outcome after photothrombotic stroke and transiently upregulates binding densities of excitatory glutamate receptors in the rat brain. Stroke 2008; 39: 1012-1021 Im Internet https://pubmed.ncbi.nlm.nih.gov/18239176/
- 23 Schäbitz WR, Berger C, Kollmar R. et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke 2004; 35: 992-997 Im Internet https://pubmed.ncbi.nlm.nih.gov/14988579/
- 24 Bland ST, Pillai RN, Aronowski J. et al. Early overuse and disuse of the affected forelimb after moderately severe intraluminal suture occlusion of the middle cerebral artery in rats. Behav Brain Res 2001; 126: 33-41 Im Internet: https://pubmed.ncbi.nlm.nih.gov/11704249/
- 25 Bland ST, Schallert T, Strong R. et al. Early exclusive use of the affected forelimb after moderate transient focal ischemia in rats: functional and anatomic outcome. Stroke 2000; 31: 1144-1152 Im Internet: https://pubmed.ncbi.nlm.nih.gov/10797179/
- 26 Dromerick AW, Lang CE, Birkenmeier RL. et al. Very early constraint-induced movement during stroke rehabilitation (VECTORS): A single-center RCT. Neurology 2009; 73: 195-201 Im Internet: https://pubmed.ncbi.nlm.nih.gov/19458319/
- 27 Nelles G., Platz T., Allert N. et al. Rehabilitation sensomotorischer Störungen, S2k-Leitlinie, 2023, Seite 71, in: Deutsche Gesellschaft für Neurologie (Hrsg.), Leitlinien für Diagnostik und Therapie in der Neurologie. Online: www.dgn.org/leitlinien (abgerufen am 11.09.2023). https://dgn.org/leitlinie/rehabilitation-von-sensomotorischen-storungen
- 28 Schmidt-Pogoda A, Bonberg N, Koecke MHM. et al. Why Most Acute Stroke Studies Are Positive in Animals but Not in Patients: A Systematic Comparison of Preclinical, Early Phase, and Phase 3 Clinical Trials of Neuroprotective Agents. Ann Neurol 2020; 87: 40-51 Im Internet: https://pubmed.ncbi.nlm.nih.gov/31714631/
- 29 Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol 2017; 133: 245-261 Im Internet: https://pubmed.ncbi.nlm.nih.gov/28064357/
- 30 Dirnagl U, Bannach-Brown A, McCann S. External validity in translational biomedicine: understanding the conditions enabling the cause to have an effect. EMBO Mol Med. 2022. 14. e14334 Im Internet: https://onlinelibrary.wiley.com/
- 31 Balkaya M, Kröber J, Gertz K. et al. Characterization of long-term functional outcome in a murine model of mild brain ischemia. J Neurosci Methods 2013; 213: 179-187 Im Internet: https://pubmed.ncbi.nlm.nih.gov/23291083/
- 32 Chen R, Cohen LG, Hallett M. Nervous system reorganization following injury. Neuroscience 2002; 111: 761-773 Im Internet https://pubmed.ncbi.nlm.nih.gov/12031403/
- 33 Prabhakaran S, Zarahn E, Riley C. et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair 2008; 22: 64-71 Im Internet: https://pubmed.ncbi.nlm.nih.gov/17687024/
- 34 Zarahn E, Alon L, Ryan SL. et al. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb Cortex 2011; 21: 2712-2721 Im Internet https://pubmed.ncbi.nlm.nih.gov/21527788/
- 35 Takase H, Regenhardt R. Motor tract reorganization after acute central nervous system injury: A translational perspective. Neural Regen Res 2021; 16: 1144-1149 Im Internet: https://pubmed.ncbi.nlm.nih.gov/33269763/
- 36 Cho M, Jang S. Peri-infarct reorganization of an injured corticospinal tract in a patient with cerebral infarction. Neural Regen Res 2021; 16: 1671 Im Internet: https://pubmed.ncbi.nlm.nih.gov/33433499/
- 37 Jeffers MS, Karthikeyan S, Gomez-Smith M. et al. Does Stroke Rehabilitation Really Matter? Part B: An Algorithm for Prescribing an Effective Intensity of Rehabilitation. Neurorehabil Neural Repair 2018; 32: 73-83 Im Internet: https://pubmed.ncbi.nlm.nih.gov/29334831/
- 38 Emberson J, Lees KR, Lyden P. et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: A meta-analysis of individual patient data from randomised trials. Lancet 2014; 384: 1929-1935 Im Internet: https://pubmed.ncbi.nlm.nih.gov/25106063/