Synlett 2024; 35(13): 1500-1529
DOI: 10.1055/a-2184-5115
account

Stereocontrolled Aldol-Like Reactions Involving Oxocarbenium Intermediates

Oriol Galeote
,
Stuart C. D. Kennington
,
Miguel Mellado-Hidalgo
,
Anna M. Costa
,
Pedro Romea
,
Fèlix Urpí
Financial support from the Ministerio de Ciencia e Innovación, Spain (MCIN/AEI/10.13039/501100011033/FEDER, UE) (Grant nos. PID2021-126521NB-I00 and PGC2018-094311–B-I00) is gratefully acknowledged. Doctorate studentships to O.G. (FI-AGAUR, Generalitat de Catalunya), S.C.D.K. (FI-AGAUR, Generalitat de Catalunya), and M.M.-H. (PREDOC-UB, Universitat de Barcelona) are gratefully acknowledged.


Abstract

Oxocarbenium cations are key intermediates for the stereocontrolled construction of carbon–carbon bonds. In particular, we have developed a wide range of stereoselective aldol-like processes that take advantage of the high reactivity of the oxocarbenium species arising from acetals, glycals, and orthoesters with metal enolates. This Account describes the development and optimization of such processes, together with other significant contributions, with a particular emphasis on their application to the synthesis of natural products.

1 Introduction

2 Substrate-Controlled Processes

2.1 Additions to Acyclic Acetals

2.2 Additions to Cyclic Acetals

3 Chiral-Auxiliary-Based Processes

3.1 Additions to Acyclic Acetals

3.2 Additions to Cyclic Acetals and Glycals

4 Chiral-Catalysis-Based Processes

4.1 Organocatalysis

4.2 Metal Catalysis

5 Conclusions



Publication History

Received: 19 September 2023

Accepted after revision: 29 September 2023

Accepted Manuscript online:
29 September 2023

Article published online:
17 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 New address: Department of Chemistry, Faculty of Sciences, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
    • 2a Adero PO, Amarasekara H, Wen P, Bohé L, Crich D. Chem. Rev. 2018; 108: 8242
    • 2b Franconetti A, Ardá A, Asensio JL, Blériot Y, Thibaudeau S, Jiménez-Barbero J. Acc. Chem. Res. 2021; 54: 2552
  • 3 Mukaiyama T, Hayashi M. Chem. Lett. 1974; 3: 15
  • 4 Saigo K, Osaki M, Mukaiyama T. Chem. Lett. 1976; 5: 769
  • 5 Murata S, Suzuki M, Noyori R. J. Am. Chem. Soc. 1980; 102: 3248
  • 6 Murata S, Suzuki M, Noyori R. Tetrahedron 1988; 44: 4259
    • 7a Mori I, Ishihara K, Flippin LA, Nozaki K, Yamamoto H, Bartlett PA, Heathcock CH. J. Org. Chem. 1990; 55: 6107
    • 7b Denmark SE, Almstead NG. J. Am. Chem. Soc. 1991; 113: 8089
    • 7c Denmark SE, Almstead NG. J. Org. Chem. 1991; 56: 6458
    • 7d Sammakia T, Smith RS. J. Am. Chem. Soc. 1992; 114: 10998
    • 7e Sammakia T, Smith RS. J. Am. Chem. Soc. 1994; 116: 7915
  • 8 Evans DA, Urpí F, Somers TC, Clark JS, Bilodeau MT. J. Am. Chem. Soc. 1990; 112: 8215
  • 9 Ciez D, Palasz A, Trzewik B. Eur. J. Org. Chem. 2016; 1476
    • 10a Elian M, Chen MM. L, Mingos MP, Hoffmann R. Inorg. Chem. 1976; 15: 1148
    • 10b Hoffmann R. Angew. Chem., Int. Ed. Engl. 1982; 21: 711
    • 12a Trost BM, Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
    • 12b Yamashita Y, Yasukawa T, Yoo W.-J, Kitanosono T, Kobayashi S. Chem. Soc. Rev. 2018; 47: 4388
    • 12c Trost BM, Hung C.-I, Mata G. Angew. Chem. Int. Ed. 2020; 59: 4240
    • 13a In Modern Methods in Stereoselective Aldol Reactions. Mahrwald R. Wiley-VCH; Weinheim: 2013
    • 13b Kennington SC. D, Costa AM, Romea P, Urpí F. Diastereoselective Aldol Reactions. In Reference Module in Chemistry, Molecular Sciences, and Chemical Engineering. Elsevier; Amsterdam: 2022. DOI: 10.1016/B978-0-32-390644-9.00070-6
  • 14 Taylor MD, Minaskanian G, Winzenberg KN, Santone P, Smith AB. III. J. Org. Chem. 1982; 47: 3960
  • 15 Lefranc H, Szymoniak J, Delas C, Moïse C. Tetrahedron Lett. 1999; 40: 1123
  • 16 Rychnovsky SD, Cossrow J. Org. Lett. 2003; 5: 2367
  • 17 Funk RL, Fitzgerald JF, Olmstead TA, Para KS, Wos JA. J. Am. Chem. Soc. 1993; 115: 8849
  • 18 Keck GE, Wager CA, Wager TT, Savin KA, Covel JA, McLaws MD, Krishnamurthy D, Cee VJ. Angew. Chem. Int. Ed. 2001; 40: 231
  • 19 Lewis MD, Cha JK, Kishi Y. J. Am. Chem. Soc. 1982; 104: 4976
    • 20a Ayala L, Lucero CG, Romero JA. C, Tabacco SA, Woerpel KA. J. Am. Chem. Soc. 2003; 125: 15521
    • 20b Chamberland S, Ziller JW, Woerpel KA. J. Am. Chem. Soc. 2005; 127: 5322
  • 21 For recent theoretical calculations, see: Remmerswaal WA, Hansen T, Hamlin TA, Codée JD. C. Chem. Eur. J. 2023; 29: e202203490
    • 22a Smith DM, Tran MB, Woerpel KA. J. Am. Chem. Soc. 2003; 125: 14149
    • 22b Larsen CH, Ridgway BH, Shaw JT, Smith DM, Woerpel KA. J. Am. Chem. Soc. 2005; 127: 10879

      For recent reviews on glycosylation reactions, see:
    • 23a Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
    • 23b Kinfe HH. Org. Biomol. Chem. 2019; 17: 4153

      See, for instance:
    • 24a Paterson I, Cumming JG, Ward RA, Lamboley S. Tetrahedron 1995; 51: 9393
    • 24b Smith AB. III, Minbiole KP, Verhoest PR, Schelhaas M. J. Am. Chem. Soc. 2001; 122: 10942
    • 24c Vitale JP, Wolckenhauer SA, Do NM, Rychnovsky SD. Org. Lett. 2005; 7: 3255
  • 25 Díaz-Oltra S, Angulo-Pachón CA, Murga J, Falomir E, Carda M, Marco JA. Chem. Eur. J. 2011; 17: 675
  • 26 Wallace GA, Scott RW, Heathcock CH. J. Org. Chem. 2000; 65: 4145
  • 27 Baiget J, Cosp A, Gálvez E, Gómez-Pinal L, Romea P, Urpí F. Tetrahedron 2008; 64: 5637
    • 28a Cosp A, Romea P, Talavera P, Urpí F, Vilarrasa J, Font-Bardia M, Solans X. Org. Lett. 2001; 3: 615
    • 28b Gálvez E, Romea P, Urpí F. Org. Synth. 2009; 86: 81
    • 29a Cosp A, Larrosa I, Vilasís I, Romea P, Urpí F, Vilarrasa J. Synlett 2003; 1109
    • 29b Gálvez E, Parelló R, Romea P, Urpí F. Synlett 2008; 2951
    • 30a Crimmins MT, Dechert A.-MR. Org. Lett. 2009; 11: 1635
    • 30b Crimmins MT, Hughes CO. Org. Lett. 2012; 14: 2168
    • 30c Pulukuri KK, Chakraborty TK. Org. Lett. 2012; 14: 2858
    • 30d Liu H.-M, Chang C.-Y, Lai Y.-C, Yang M.-D, Chang C.-Y. Tetrahedron: Asymmetry 2014; 25: 187
    • 30e Kuilya TK, Goswami RK. Org. Lett. 2017; 19: 2366
    • 30f Sharma H, Mondal J, Ghosh AK, Pal RR, Goswami RK. Chem. Sci. 2022; 13: 13403
    • 31a Zhang Y, Sammakia T. Org. Lett. 2004; 6: 3139
    • 31b Smith TE, Kuo W.-H, Bock VD, Rolzen JL, Balskus EP, Theberge AB. Org. Lett. 2007; 9: 1153
    • 32a Cosp A, Romea P, Urpí F, Vilarrasa J. Tetrahedron Lett. 2001; 42: 4629
    • 32b Chakraborty TK, Pulukuri KK, Sreekanth M. Tetrahedron Lett. 2010; 51: 6444
    • 32c Hidgson DM, Man S. Chem. Eur. J. 2011; 17: 9731
    • 32d Gajula PK, Sharma S, Ampapathi RS, Chakarborty TK. Org. Biomol. Chem. 2013; 11: 257
    • 32e Nicolaou KC, Bellavance G, Buchman M, Pulukuri KK. J. Am. Chem. Soc. 2017; 139: 16636
  • 33 Cosp A, Llàcer E, Romea P, Urpí F. Tetrahedron Lett. 2006; 47: 5819
  • 34 Baiget J, Caba M, Gálvez E, Romea P, Urpí F, Font-Bardia M. J. Org. Chem. 2012; 77: 8809
  • 35 For a review on stereoselective aldol reactions of glycolic acid and derivatives, see: Engesser T, Brückner R. Synthesis 2017; 51: 1715
  • 36 Checa B, Gálvez E, Parelló R, Sau M, Romea P, Urpí F, Font-Bardia M, Solans X. Org. Lett. 2009; 11: 2193
    • 37a Romo JM, Gálvez E, Nubiola I, Romea P, Urpí F, Kindred M. Adv. Synth. Catal. 2013; 355: 2781
    • 37b Fernández-Valparis J, Romo JM, Romea P, Urpí F, Kowalski H, Font-Bardia M. Org. Lett. 2015; 17: 3540
    • 37c Kennington SC. D, Ferré M, Romo JM, Romea P, Urpí F, Font-Bardia M. J. Org. Chem. 2017; 82: 6426
  • 38 Kennington SC. D, Romo JM, Romea P, Urpí F. Org. Lett. 2016; 18: 3018
    • 39a Romo JM, Romea P, Urpí F. Eur. J. Org. Chem. 2019; 6296
    • 39b Fernández-Valparís J, Romea P, Urpí F, Font-Bardia M. Org. Lett. 2017; 19: 6400
  • 40 Fernández-Valparís J, Romea P, Urpí F. Eur. J. Org. Chem. 2019; 2745

    • For reviews on vinylogous Mukaiyama aldol reactions, see:
    • 41a Kalesse M, Cordes M, Symkenberg G, Lu H.-H. Nat. Prod. Rep. 2014; 31: 563
    • 41b Cordes M, Kalesse M. Molecules 2019; 24: 3040
    • 41c Curti C, Battistini L, Sartori A, Zanardi F. Chem. Rev. 2020; 120: 2448
    • 42a Tsukada H, Mukaeda Y, Hosokawa S. Org. Lett. 2013; 15: 678
    • 42b Sagawa N, Moriya H, Hosokawa S. Org. Lett. 2017; 19: 250
  • 43 Zhang Y.-H, Liu R, Liu B. Chem. Commun. 2017; 53: 5549
  • 44 Pilli RA, Riatto VB, Vencato I. Org. Lett. 2000; 2: 53
    • 45a Larrosa I, Romea P, Urpí F, Balsells D, Vilarrasa J, Font-Bardia M, Solans X. Org. Lett. 2002; 4: 4651
    • 45b Gálvez E, Larrosa I, Romea P, Urpí F. Synlett 2009; 2982
    • 45c Gálvez E, Sau M, Romea P, Urpí F, Font-Bardia M. Tetrahedron Lett. 2013; 54: 1467
  • 46 Larrosa I, Romea P, Urpí F. Org. Lett. 2006; 8: 527
    • 47a Harrison TJ, Ho S, Leighton JL. J. Am. Chem. Soc. 2011; 133: 7308
    • 47b Chen L.-A, Ashley MA, Leighton JL. J. Am. Chem. Soc. 2017; 139: 4568
  • 48 Kasun ZA, Gao X, Lipinski RM, Krische MJ. J. Am. Chem. Soc. 2015; 137: 8900
    • 49a Trost BM. Science 1991; 254: 1471
    • 49b Trost BM. Angew. Chem., Int. Ed. Engl. 1995; 34: 259
  • 51 MacMillan DW. C. Nature 2008; 455: 304
  • 52 For a review on organocatalytic approaches, see: Lei C.-W, Mu B.-S, Zhou F, Yu J.-S, Zhou Y, Zhou J. Chem. Commun. 2021; 57: 9178
  • 53 Banik SM, Levina A, Hyde AM, Jacobsen EN. Science 2017; 358: 761
  • 54 Schreyer L, Kaib PS. J, Wakchaure VN, Obradors C, Properzi R, Lee S, List B. Science 2018; 362: 216
  • 55 For a review on IDPis catalysis, see: Schreyer L, Properzi R, List B. Angew. Chem. Int. Ed. 2019; 58: 12761
  • 56 Bae HY, Höfler D, Kaib PS. J, Kasaplar P, De CK, Döhring A, Lee S, Kaupmees K, Leito I, List B. Nat. Chem. 2018; 10: 888
    • 57a Reisman SE, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 7198
    • 57b Ford DD, Lehnherr D, Kennedy CR, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 78605
    • 57c Kennedy CR, Lehnherr D, Rajapaksa NS, Ford DD, Park Y, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 13525
  • 58 Meng Z, Sun S, Yuan H, Lou H, Liu L. Angew. Chem. Int. Ed. 2014; 53: 543
  • 59 Lee S, Kaib PS. J, List B. J. Am. Chem. Soc. 2017; 139: 2156
  • 60 Lee S, Bae HY, List B. Angew. Chem. Int. Ed. 2018; 57: 12162
  • 61 Evans DA, Thomson RJ. J. Am. Chem. Soc. 2005; 127: 10506
  • 62 Suzuki T, Hamashima M, Sodeoka M. Angew. Chem. Int. Ed. 2007; 46: 5435
  • 63 Kennington SC. D, Taylor AJ, Romea P, Urpí F, Aullón G, Font-Bardia M, Ferré L, Rodrigalvarez J. Org. Lett. 2019; 21: 305
  • 64 Teloxa SF, Kennington SC. D, Camats M, Romea P, Urpí F, Aullón G, Font-Bardia M. Chem. Eur. J. 2020; 21: 11540
  • 65 Kennington SC. D, Teloxa SF, Mellado-Hidalgo M, Galeote O, Puddu S, Bellido M, Romea P, Urpí F, Aullón G, Font-Bardia M. Angew. Chem. Int. Ed. 2021; 60: 15307
  • 66 Teloxa SF, Mellado-Hidalgo M, Kennington SC. D, Romea P, Urpí F, Aullón G, Font-Bardia M. Chem. Eur. J. 2022; 28: e202200671
  • 67 Ye P, Liu X, Wang G, Liu L. Chin. Chem. Lett. 2021; 32: 1237
  • 68 Mellado-Hidalgo M, Romero-Cavagnaro EA, Nageswaran S, Puddu S, Kennington SC. D, Costa AM, Romea P, Urpí F, Aullón G, Font-Bardia M. Org. Lett. 2023; 25: 659
  • 69 Lee A, Betori RC, Crane EA, Scheidt KA. J. Am. Chem. Soc. 2018; 140: 6212
  • 70 Wang G, Xin X, Wang Z, Lu G, Ma Y, Liu L. Nat. Commun. 2019; 10: 559