RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2024; 35(10): 1141-1144
DOI: 10.1055/a-2187-9441
DOI: 10.1055/a-2187-9441
cluster
Thieme Chemistry Journals Awardees 2023
Molybdenum-Catalyzed Directed Activation of Aryl Chlorides and Fluorides
This research was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Scientific Research (B) No. 22H02125 to S.A., and KAKENHI Grant-in-Aid for Transformative Research Areas (Digi-TOS) No. 22H05384 (L.I.).
Abstract
A low-valent molybdenum species generated by the reduction of a molybdenum precursor with phenylmagnesium bromide catalytically cleaves a C–Cl or C–F bond in an aromatic ketone under mild conditions, followed by cyclization to produce a hydroxyphthalan (1,3-dihydro-2-benzofuran-1-ol) derivative.
Key words
molybdenum catalysis - chloroarenes - fluoroarenes - phthalans - benzofuranols - cyclizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2187-9441.
- Supporting Information
Publikationsverlauf
Eingereicht: 08. September 2023
Angenommen nach Revision: 09. Oktober 2023
Accepted Manuscript online:
09. Oktober 2023
Artikel online veröffentlicht:
06. November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Smedley PL, Kinniburgh DG. Appl. Geochem. 2017; 84: 387
- 2 Schwarz G, Mendel RR, Ribbe MW. Nature 2009; 460: 839
- 3a Catalysis Without Precious Metals . Bullock RM. Wiley-VCH; Weinheim: 2010
- 3b Nakamura E, Sato K. Nat. Mater. 2011; 10: 158
- 3c Bullock RM, Chen JG, Gagliardi L, Chirik PJ, Farha OK, Hendon CH, Jones CW, Keith JA, Klosin J, Minteer SD, Morris RH, Radosevich AT, Rauchfuss TB, Strotman NA, Vojvodic A, Ward TR, Yang JY, Surendranath Y. Science 2020; 369: eabc3183
- 4a Sousa SC. A, Fernandes AC. Coord. Chem. Rev. 2015; 284: 67
- 4b Nitrogen Fixation . Nishibayashi Y. Springer; Heidelberg: 2017
- 4c Molybdenum: An Outline of its Chemistry and Uses . Braithwaite ER, Haber J. Elsevier; Amsterdam: 2018
- 5a Metal-Catalyzed Cross-Coupling Reactions and More, Vol. 1–3. de Meijere A, Brässe S, Oestreich M. Wiley-VCH; Weinheim: 2014
- 5b Applied Cross-Coupling Reactions . Nishihara Y. Springer; Berlin: 2013
- 6a Sangu K, Watanabe T, Takaya J, Iwasawa N. Synlett 2007; 929
- 6b Ren W, Yamane M. J. Org. Chem. 2010; 75: 3017
- 6c Roberts B, Liptrot D, Alcaraz L, Luker T, Stocks MJ. Org. Lett. 2010; 12: 4280
- 6d Roberts B, Liptrot D, Luker T, Stocks MJ, Barber C, Webb N, Dods R, Martin B. Tetrahedron Lett. 2011; 52: 3793
- 7a Takaya J, Sangu K, Iwasawa N. Angew. Chem. Int. Ed. 2009; 48: 7090
- 7b Nakka M, Tadikonda R, Nakka S, Vidavalur S. Adv. Synth. Catal. 2016; 358: 520
- 7c Darbem MP, Esteves HA, Burrow RA, Soares-Paulino AA, Pimenta DC, Stefani HA. RSC Adv. 2022; 12: 2145
- 8a Kiplinger JL, Richmond TG. Polyhedron 1997; 16: 409
- 8b Himmelbauer D, Mastalir M, Stöger B, Veiros LF, Kirchner K. Organometallics 2018; 37: 3631
- 9a Grushin VV, Alper H. Chem. Rev. 1994; 94: 1047
- 9b Littke AF, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
- 10 Keller MB. J. Clin. Psychiatry (Memphis, TN U. S.) 2000; 61: 896
- 11a Asako S, Ishikawa S, Takai K. ACS Catal. 2016; 6: 3387
- 11b Asako S, Sakae T, Murai M, Takai K. Adv. Synth. Catal. 2016; 358: 3966
- 12 Asako S, Kobashi T, Takai K. J. Am. Chem. Soc. 2018; 140: 15425
- 13a Asako S, Ishihara S, Hirata K, Takai K. J. Am. Chem. Soc. 2019; 141: 9832
- 13b Asako S, Kobayashi T, Ishihara S, Takai K. Asian J. Org. Chem. 2021; 10: 753
- 13c Banerjee S, Kobayashi T, Takai K, Asako S, Ilies L. Org. Lett. 2022; 24: 7242
- 14a Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 14b Ilies L. Bull. Chem. Soc. Jpn. 2021; 94: 404
- 15 CCDC 2270774 contains the supplementary crystallographic data for compound 2a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 16a Cahiez G, Luart D, Lecomte F. Org. Lett. 2004; 6: 4395
- 16b Sapountzis I, Lin W, Kofink CC, Despotopoulou C, Knochel P. Angew. Chem. Int. Ed. 2005; 44: 1654
- 16c Korn TJ, Knochel P. Angew. Chem. Int. Ed. 2005; 44: 2947
- 16d Korn TJ, Schade MA, Cheemala MN, Wirth S, Guevara SA, Cahiez G, Knochel P. Synthesis 2006; 3547
- 16e Steib AK, Kuzmina OM, Fernandez S, Flubacher D, Knochel P. J. Am. Chem. Soc. 2013; 135: 15346
- 16f Zeng J, Liu KM, Duan XF. Org. Lett. 2013; 15: 5342
- 16g Hua X.-Y, Masson-Makdissi J, Sullivan RJ, Newman SG. Org. Lett. 2016; 18: 5312
- 17 Hydroxyphthalans 2a–e; General Procedure MoO2Cl2(dtbpy) (4.6 mg, 0.010 mmol, 2 mol%) and the appropriate 2-halobenzophenone 1 (0.50 mmol) were added to a dry Schlenk tube equipped with a Teflon-coated magnetic stirrer bar under a N2 atmosphere. The reaction vessel was fitted with a rubber septum and charged with THF (0.50 mL) from a syringe. The mixture was stirred until a clear light-pinkish solution formed, then cooled to 0 °C (ice bath). Next, a 0.81 mol/L solution of PhMgBr in THF (0.74 mL, 1.2 equiv) was added dropwise by using a syringe pump (addition rate: 0.5 mL/min) at 0 °C under nitrogen. Upon addition, the color of the reaction mixture turned deep violet. After completion of the addition, the septum was removed, the Schlenk tube was sealed under N2 with a screw cap, and the mixture was stirred at rt for 16 h. Tridecane, as an internal standard for GC, and THF (~0.5 mL) were added, and the resulting mixture was stirred vigorously for 5 min. The reaction was then quenched by the addition of a sat. aq NH4Cl (~1 mL) and 30% aq potassium sodium tartrate (~1 mL) with continuous stirring for 5 min. An aliquot was taken directly from the upper organic layer and passed through a plug of Florisil with EtOAc. The resulting solution was analyzed by GC to determine the yield. The aliquot for GC measurement was then returned to the reaction mixture, which was extracted with EtOAc. The combined organic phase was passed through a plug of Florisil, dried (Na2SO4), and then concentrated under reduced pressure. The resulting mixture was analyzed by 1H or 19F NMR to estimate the yield. The product was finally isolated by column chromatography on neutral alumina. 3-(2-Chlorophenyl)-1,3-diphenyl-1,3-dihydro-2-benzofuran-1-ol (2a) Two batches were prepared in by the general procedure from 1a [213.6 mg, (0.98 mmol) and 211.6 mg (0.97 mmol)]. During workup, the two batches were combined, and the yield (89%) was determined by GC analysis. Purification by column chromatography (neutral alumina; 10% EtOAc–hexane) gave a colorless solid; yield: 323.9 mg (83%, 0.81 mmol). Minor impurities were removed by further purification by GPC (CHCl3). The diastereoselectivity of the product was 1.1:1. 1H NMR (500 MHz, CDCl3): δ = 7.65–7.59 (m, 3 H), 7.55 (dt, J = 7.7, 0.8 Hz, 1 H), 7.53–7.49 (m, 2 H), 7.48–7.27 (m, 27 H), 7.24–7.22 (m, 3 H), 7.15 (td, J = 7.6, 1.3 Hz, 1 H), 3.52 (s, 1 H), 3.07 (s, 1 H). 13C{1 H} NMR (126 MHz, CDCl3): δ = 145.7, 143.8, 143.5, 143.0, 142.85, 142.80, 142.5, 142.3, 142.0, 140.64, 134.9, 133.9, 132.2, 132.1, 129.7, 129.5, 129.4, 129.27, 129.25, 129.0, 128.9, 128.6, 128.5, 128.4, 128.35, 128.31, 127.4, 127.2, 126.6, 126.5, 126.3, 126.08, 126.04, 125.7, 125.0, 124.7, 123.78, 123.66, 108.5, 107.8, 93.90, 92.6. HRMS (APCI+): m/z [M – OH]+ calcd for C26H18ClO: 381.1041; found: 381.1020.
For coupling of 2-iodoglycals, see:
For examples, see: