Subscribe to RSS
DOI: 10.1055/a-2191-1893
High-resolution ultrasound of the supra- and infraclavicular levels of the brachial plexus including the axillary nerve: imaging anatomy based on multiplanar reconstructions and technical guide
Hochauflösender Ultraschall des Plexus brachialis supra- und infraklavikulär mit Nervus axillaris: Ultraschallanatomie auf der Basis multiplanarer Rekonstruktionen und technischer LeitfadenAbstract
Purpose The diagnosis of peripheral nerve injuries remains challenging. Electromyography and nerve conduction studies do not allow precise localization of the lesion and differentiation between lesions in continuity and non-continuity in cases with complete axonotmesis. Improved ultrasound technology allows the examination of almost the entire peripheral nervous system. The complex sono-anatomy of the brachial plexus outside of the standard scanning planes makes it difficult to access this region.
Methods On the basis of the Visible Human Project of the National Institutes of Health (NIH), multiplanar reconstructions were created with the 3D Slicer open-source software in the various planes of the ultrasound cross-sections. The ultrasound examination itself and the guidance of the ultrasound probe in relation to the patient were recorded as video files and were synchronized through the audio channel. Subsequently, image matching was performed.
Results Multiplanar reconstructions facilitate visualization of anatomical regions which are challenging to access thereby enabling physicians to evaluate the course of the peripheral nerve of interest in dynamic conditions. Sonographically visible structures could be reproducibly identified in single-frame analysis.
Conclusion With precise knowledge of the ultrasound anatomy, the nerve structures of the brachial plexus can also be dynamically assessed almost in their entire course. An instructional video on ultrasound of the brachial plexus supplements this manuscript and has been published on Vimeo.com.
Zusammenfassung
Ziel Die Diagnose peripherer Nervenverletzungen bleibt eine Herausforderung. Elektromyografie und -neurografie erlauben keine präzise Lokalisation der Läsion und Abklärung der Nervenkontinuität in Fällen mit vollständiger Axonotmesis. Die verbesserte Ultraschalltechnologie ermöglicht die Untersuchung fast des gesamten peripheren Nervensystems. Die komplexe Sonoanatomie des Plexus brachialis (PB) außerhalb der Standard-Schnittbildebenen erschwert den Zugang zu dieser Region.
Material und Methode Basierend auf dem Visible Human Project des National Institutes of Health wurden mithilfe der Open-Source-Software „3DSlicer“ multiplanare Rekonstruktionen in den Ebenen der Ultraschall-Schnittbilder erstellt. Die Ultraschalluntersuchung selbst und die Führung der Ultraschallsonde in Bezug zum Patienten wurden als Videodateien aufgezeichnet und über den Audiokanal synchronisiert. Anschließend wurde ein schrittweiser Abgleich der Schnittbilder durchgeführt.
Ergebnisse Multiplanare Rekonstruktionen erleichtern die Visualisierung von anatomischen Regionen, die schwer zugänglich sind und ermöglichen es Ärzten, den Verlauf des peripheren Nervs von Interesse unter dynamischen Bedingungen zu beurteilen. Sonografisch sichtbare Strukturen konnten reproduzierbar in der Einzelbildanalyse identifiziert werden.
Schlussfolgerungen Mit präzisem Wissen über die Ultraschallanatomie können auch die Nervenstrukturen des PB fast über ihren gesamten Verlauf dynamisch beurteilt werden. Ein Lehrvideo zur Ultraschalluntersuchung des PB ergänzt dieses Manuskript und wurde auf Vimeo.com veröffentlicht.
Keywords
peripheral nerve injuries - brachial plexus - sonography - METHODS & TECHNIQUES - ultrasound - clinical decision-makingPublication History
Received: 19 December 2022
Accepted after revision: 04 October 2023
Article published online:
27 December 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Huckhagel T, Nüchtern J, Regelsberger J. et al. Nerve injury in severe trauma with upper extremity involvement: evaluation of 49,382 patients from the TraumaRegister DGU between 2002 and 2015. Scand J Trauma Resusc Emerg Med 2018; 26: 76 DOI: 10.1186/s13049-018-0546-6.
- 2 Bergmeister KD, Große-Hartlage L, Daeschler SC. et al. Acute and long-term costs of 268 peripheral nerve injuries in the upper extremity. PLoS One 2020; 15: e0229530 DOI: 10.1371/journal.pone.0229530.
- 3 Seddon HJ. A classification of nerve injuries. Br Med J 1942; 2: 237-239 DOI: 10.1136/bmj.2.4260.237. (PMID: 20784403)
- 4 Kazamel M, Warren PP. History of electromyography and nerve conduction studies: A tribute to the founding fathers. J Clin Neurosci 2017; 43: 54-60 DOI: 10.1016/j.jocn.2017.05.018. (PMID: 28629678)
- 5 Holzgrefe RE, Wagner ER, Singer AD. et al. Imaging of the Peripheral Nerve: Concepts and Future Direction of Magnetic Resonance Neurography and Ultrasound. J Hand Surg Am 2019; 44: 1066-1079 DOI: 10.1016/j.jhsa.2019.06.021. (PMID: 31585745)
- 6 Wijntjes J, Borchert A, van Alfen N. Nerve Ultrasound in traumatic and iatrogenic PNI. Diagnostics (Basel) 2020; 11: 30 DOI: 10.3390/diagnostics11010030. (PMID: 33375348)
- 7 Grimm A, Winter N, Kolbenschlag J. et al. The interdisciplinary diagnostics and treatment of peripheral nerve lesions. Nervenarzt 2020; 91: 1149-1163 DOI: 10.1007/s00115-020-01022-8. (PMID: 33201263)
- 8 Lauretti L, D’Alessandris QG, Granata G. et al. Ultrasound evaluation in traumatic peripheral nerve lesions: from diagnosis to surgical planning and follow-up. Acta Neurochir (Wien) 2015; 157: 1947-1951 DOI: 10.1007/s00701-015-2556-8.
- 9 Holzgrefe RE, Wagner ER, Singer AD. et al. Imaging of the Peripheral Nerve: Concepts and Future Direction of Magnetic Resonance Neurography and Ultrasound. J Hand Surg Am 2019; 44: 1066-1079 DOI: 10.1016/j.jhsa.2019.06.021.
- 10 Fornage B. Peripheral Nerves of the Extremities: Imaging with US. Radiology 1988; 167: 179-182 DOI: 10.1148/radiology.167.1.3279453. (PMID: 3279453)
- 11 Filler AG, Howe FA, Hayes CE. et al. Magnetic resonance neurography. Lancet 1993; 341: 659-661 DOI: 10.1016/0140-6736(93)90422-d.
- 12 Gonzalez NL, Hobson-Webb LD. Neuromuscular ultrasound in clinical practice: A review. Clin Neurophysiol Pract 2019; 4: 148-163 DOI: 10.1016/j.cnp.2019.04.006. (PMID: 31886438)
- 13 Vinent Juanico L, Kervyn G. Z-Anatomy. The open source atlas of anatomy (app). 2022 https://github.com/LluisV/Z-Anatomy
- 14 Johnson EO, Vekris M, Demesticha T. et al. Neuroanatomy of the brachial plexus: normal and variant anatomy of its formation. Surg Radiol Anat 2010; 32: 291-297 DOI: 10.1007/s00276-010-0646-0. (PMID: 20237781)
- 15 Fazan VPS, de Souza Amadeu A, Caleffi AL. et al. Brachial plexus variations in its formation and main branches. Acta Cir Bras 2003; 18 (Suppl. 05) 14-18 DOI: 10.1590/S0102-86502003001200006.
- 16 Leinberry CF, Wehbé MA. Brachial plexus anatomy. Hand Clin 2004; 20: 1-5 DOI: 10.1016/s0749-0712(03)00088-x.
- 17 Griffith JF. Ultrasound of the Brachial Plexus. Semin Musculoskelet Radiol 2018; 22: 323-333 DOI: 10.1055/s-0038-1645862.
- 18 Groen GJ, Krediet AC, Moayeri N. et al. Brachial plexus sonoanatomy explained by multiplanar reformatting of digitized anatomy. Eur J Pain Suppl 2010; 4: 303-311 DOI: 10.1016/j.eujps.2010.09.005.
- 19 Ackerman MJ. The Visible Human Project: From body to bits. Annu Int Conf IEEE Eng Med Biol Soc 2016; 2016: 3338-3341 DOI: 10.1109/EMBC.2016.7591442. (PMID: 35600127)
- 20 Fedorov A, Beichel R, Kalpathy-Cramer J. et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012; 30: 1323-1341 DOI: 10.1016/j.mri.2012.05.001. (PMID: 22770690)
- 21 Baute V, Strakowski JA, Reynolds JW. et al. Neuromuscular ultrasound of the brachial plexus: A standardized approach. Muscle Nerve 2018; 58: 618-624 DOI: 10.1002/mus.26144.
- 22 Martinoli C, Bianchi S, Santacroce E. et al. Brachial plexus sonography: a technique for assessing the root level. AJR Am J Roentgenol 2002; 179: 699-702 DOI: 10.2214/ajr.179.3.1790699. (PMID: 12185049)
- 23 Faruch Bilfeld M, Lapègue F, Sans N. et al. Ultrasonography study of the suprascapular nerve. Diagn Interv Imaging 2017; 98: 873-879 DOI: 10.1016/j.diii.2017.09.003.
- 24 Hanson NA, Auyong DB. Systematic ultrasound identification of the dorsal scapular and long thoracic nerves during interscalene block. Reg Anesth Pain Med 2013; 38: 54-57
- 25 Chang KV, Lin CP, Lin CS. et al. Sonographic tracking of trunk nerves: essential for ultrasound-guided pain management and research. J Pain Res 2017; 10: 79-88 DOI: 10.2147/JPR.S123828.
- 26 Gruber H, Loizides A, Moriggl B. Sonographic Peripheral Nerve Topography, A Landmark-based Algorithm, 1st ed. Berlin: Springer; 2019
- 27 Gruber H, Peer S, Gruber L. et al. Ultrasound imaging of the axillary nerve and its role in the diagnosis of traumatic impairment. Ultraschall in Med 2014; 35: 332-338 DOI: 10.1055/s-0034-1366089. (PMID: 24647764)
- 28 Dietz AR, Bucelli RC, Pestronk A. et al. Nerve ultrasound identifies abnormalities in the posterior interosseous nerve in patients with proximal radial neuropathies. Muscle Nerve 2016; 53: 379-383 DOI: 10.1002/mus.24778.
- 29 Iriarte I. YouTube Channel ‘Msk Freak’. YouTube.com 2020