Subscribe to RSS
DOI: 10.1055/a-2201-3612
Purine-Based AIEgens with Different Morpholine Substitution Sites and Their Application in Lipophagy Imaging
This work was financially supported by the National Natural Science Foundation of China (No. 22077088 and 22207079) and Foundation from the Science and Technology Department of Sichuan Province (2021YFH0132).
Abstract
Lysosomes are an important organelle involved in many physiological processes. However, enhancing the accurate localization of lysosomes by chemical modification is still a problem. Herein, the purine-based AIEgens with different morpholine substitution sites were constructed. The effects of modification sites on the absorption, fluorescence, pH, viscosity and bioimaging properties of the probes were systematically studied. The morpholine modification at the phenyl site could effectively enhance the fluorescence behavior and the lysosome specificity. The morpholine-modified AIEgens could achieve the further lysosome imaging during the lipophagy process. This basic study might do favor to design more probes for further lysosome function studies.
Key words
purine - aggregation-induced emission - lipophagy - morpholine - lysosome-targeting - fluorescent probeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2201-3612.
- Supporting Information
Publication History
Received: 16 June 2023
Accepted after revision: 30 October 2023
Accepted Manuscript online:
30 October 2023
Article published online:
15 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Mizushima N, Komatsu M. Cell 2011; 147: 728
- 2 Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, Sarkar S, Korolchuk VI. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2016; 1861: 269
- 3 Leeman DS, Hebestreit K, Ruetz T, Webb AE, McKay A, Pollina EA, Dulken BW, Zhao X, Yeo RW, Ho TT, Mahmoudi S, Devarajan K, Passegué E, Rando TA, Frydman J, Brunet A. Science 2018; 359: 1277
- 4 Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J, Verovskaya EV, Figueroa ME, Passegué E. Nature 2017; 543: 205
- 5 Oyarzún JE, Lagos J, Vázquez MC, Valls C, De la Fuente C, Yuseff MI, Alvarez AR, Zanlungo S. Biochim. Biophys. Acta, Mol. Basis Dis. 2019; 1865: 1076
- 6 Ferguson SM. Neurosci. Lett. 2019; 697: 1
- 7 Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Nature 2009; 458: 1131
- 8 Li B, Ge G. b, Wen L, Yuan Y, Zhang R, Peng X, Liu F, Sun S. Dyes Pigm. 2017; 139: 318
- 9 Zhang X, Wang C, Han Z, Xiao Y. ACS Appl. Mater. Interfaces 2014; 6: 21669
- 10 Li L.-L, Li K, Li M.-Y, Shi L, Liu Y.-H, Zhang H, Pan S.-L, Wang N, Zhou Q, Yu X.-Q. Anal. Chem. 2018; 90: 5873
- 11 Qiu K, Huang H, Liu B, Liu Y, Huang Z, Chen Y, Ji L, Chao H. ACS Appl. Mater. Interfaces 2016; 8: 12702
- 12 Ran X.-Y, Chen P, Liu Y.-Z, Shi L, Chen X, Liu Y.-H, Zhang H, Zhang L.-N, Li K, Yu X.-Q. Adv. Mater. 2023; 35: 2210179
- 13 Zhang J, Yang M, Li C, Dorh N, Xie F, Luo F.-T, Tiwari A, Liu H. J. Mater. Chem. B 2015; 3: 2173
- 14 Yu K, Pan J, Husamelden E, Zhang H, He Q, Wei Y, Tian M. Chem. Asian J. 2020; 15: 3942
- 15 He Z, Ke C, Tang BZ. ACS Omega 2018; 3: 3267
- 16 Wu Q, Li B, Wang L, Wang D, Tang BZ. Biomaterials 2022; 286: 121581
- 17 Dai Y, He F, Ji H, Zhao X, Misal S, Qi Z. ACS Sens. 2020; 5: 225
- 18 Lv Z, Man Z, Cui H, Xu Z, Cao H, Li S, Liao Q, He Q, Zheng L, Fu H. Adv. Funct. Mater. 2021; 31: 2009329
- 19 Zhang H, Shi L, Li K, Liu X, Won M, Liu Y.-Z, Choe Y, Liu X.-Y, Liu Y.-H, Chen S.-Y, Yu K.-K, Kim JS, Yu X.-Q. Angew. Chem. Int. Ed. 2022; 61: e202116439
- 20 Chen R, Wang L, Ding G, Han G, Qiu K, Sun Y, Diao J. ACS Sens. 2023; 8: 2068
- 21 Mei J, Leung NL. C, Kwok RT. K, Lam JW. Y, Tang BZ. Chem. Rev. 2015; 115: 11718
- 22 Zhao Z, Zhang H, Lam JW. Y, Tang BZ. Angew. Chem. Int. Ed. 2020; 59: 9888
- 23 Wang D, Tang BZ. Acc. Chem. Res. 2019; 52: 2559
- 24 Feng G, Kwok RT. K, Tang BZ, Liu B. Appl. Phys. Rev. 2017; 4: 021307
- 25 Arshad F, Pal A, Sk MP. ECS J. Solid State Sci. Technol. 2021; 10: 021001
- 26 Mei J, Hong Y, Lam JW. Y, Qin A, Tang Y, Tang BZ. Adv. Mater. 2014; 26: 5429
- 27 Cai X, Liu B. Angew. Chem. Int. Ed. 2020; 59: 9868
- 28 Jimenez ER, Rodríguez H. J. Mater. Sci. 2020; 55: 1366
- 29 Xia Q, Zhang Y, Li Y, Li Y, Li Y, Feng Z, Fan X, Qian J, Lin H. Aggregate 2022; 3: e152
- 30 Wu W, Liu B. Natl. Sci. Rev. 2021; 8: nwaa222
- 31 Pandey SG. R. M, Chakravarthy AS. J. Mater. Chem. Front. 2021; 5: 1541
- 32 Chua MH, Shah KW, Zhou H, Xu J. Molecules 2019; 24: 2711
- 33 Hong Y, Lam JW. Y, Tang BZ. Chem. Commun. 2009; 4332
- 34 Wang Z, Yao J, Zhan L, Gong S, Ma D, Yang C. Dyes Pigm. 2020; 180: 108437
- 35 Islam MM, Hu Z, Wang Q, Redshaw C, Feng X. Mater. Chem Front. 2019; 3: 762
- 36 Shi L, Li K, Li L.-L, Chen S.-Y, Li M.-Y, Zhou Q, Wang N, Yu X.-Q. Chem. Sci. 2018; 9: 8969
- 37 Shi L, Li K, Liu Y.-H, Liu X, Zhou Q, Xu Q, Chen S.-Y, Yu X.-Q. Chem. Commun. 2020; 56: 3661
- 38 Shi L, Liu Y.-H, Li K, Sharma A, Yu K.-K, Ji MS, Li L.-L, Zhou Q, Zhang H, Kim JS, Yu X.-Q. Angew. Chem. Int. Ed. 2020; 59: 9962
- 39 Cesaretti A, Bianconi T, Coccimiglio M, Montegiove N, Rout Y, Gentili PL, Misra R, Carlotti B. J. Phys. Chem. C 2022; 126: 10429
- 40 Wang C, Chi W, Qiao Q, Tan D, Xu Z, Liu X. Chem. Soc. Rev. 2021; 50: 12656
- 41 Chen Y, Lam JW. Y, Kwok RT. K, Liu B, Tang BZ. Mater. Horiz. 2019; 6: 428