Synlett, Table of Contents Synlett 2024; 35(10): 1131-1134DOI: 10.1055/a-2201-7267 cluster Thieme Chemistry Journals Awardees 2023 anti-Selective Synthesis of Substituted β-Homoprolines by Rhodium Alkyl Nitrene C–H Insertion Xinxin Tang , Hidetoshi Noda ∗ , Masakatsu Shibasaki ∗ Recommend Article Abstract Buy Article All articles of this category Abstract A range of β-homoprolines was prepared with high anti-selectivity. An intramolecular C–H insertion reaction involving a rhodium alkyl nitrene is a key step in the ring construction. The carboxylic acid in the products can serve as a springboard for further downstream transformations. Key words Key wordsrhodium catalysis - β-amino acids - nitrenes - N-heterocycles - C–H functionalization - homoprolines Full Text References References and Notes 1a Aguilar M.-I, Purcell AW, Devi R, Lew R, Rossjohn J, Smith AI, Perlmutter P. Org. Biomol. Chem. 2007; 5: 2884 1b Cabrele C, Martinek TA, Reiser O, Berlicki Ł. J. Med. Chem. 2014; 57: 9718 1c Gopalakrishnan R, Frolov AI, Knerr L, Drury WJ. III, Valeur E. J. Med. Chem. 2016; 59: 9599 1d Cardillo G, Gentilucci L, Qasem AR, Sgarzi F, Spampinato S. J. Med. Chem. 2002; 45: 2571 2a Abele S, Vögtli K, Seebach D. Helv. Chim. Acta 1999; 82: 1539 2b Góbi S, Knapp K, Vass E, Majer Z, Magyarfalvi G, Hollósi M, Tarczay G. Phys. Chem. Chem. Phys. 2010; 12: 13603 3 Podlech J, Seebach D. Angew. Chem. Int. Ed. 1995; 34: 471 4a Chippindale AM, Davies SG, Iwamoto K, Parkin RM, Smethurst CA. P, Smith AD, Rodriguez-Solla H. Tetrahedron 2003; 59: 3253 4b Calvet S, David O, Vanucci-Bacqué C, Fargeau-Bellassoued M.-C, Lhommet G. Tetrahedron 2003; 59: 6333 4c Zhang YJ, Park JH, Lee S.-g. Tetrahedron: Asymmetry 2004; 15: 2209 4d Ji M.-K, Hertsen D, Yoon D.-H, Eum H, Goossens H, Waroquier M, Van Speybroeck V, D’hooghe M, De Kimpe N, Ha H.-J. Chem. Asian J. 2014; 9: 1060 4e Csatayová K, Davies SG, Figuccia AL. A, Fletcher AM, Ford JG, Lee JA, Roberts PM, Saward BG, Song H, Thomson JE. Tetrahedron 2015; 71: 9131 4f Aparici I, Guerola M, Dialer C, Simón-Fuentes A, Sánchez-Roselló M, del Pozo C, Fustero S. Org. Lett. 2015; 17: 5412 4g Quintavalla A, Carboni D, Simeone M, Lombardo M. Org. Lett. 2023; 25: 7067 5a Cordero FM, Brandi A. Chem. Rec. 2021; 21: 284 5b Cordero FM, Salvati M, Pisaneschi F, Brandi A. Eur. J. Org. Chem. 2004; 2205 6 Zhang Y, Yin Z, Wu X.-F. Org. Lett. 2020; 22: 1889 7a Yu J.-S, Noda H, Shibasaki M. Angew. Chem. Int. Ed. 2018; 57: 818 7b Yu J.-S, Noda H, Shibasaki M. Chem. Eur. J. 2018; 24: 15796 7c Amemiya F, Noda H, Shibasaki M. Chem. Pharm. Bull. 2019; 67: 1046 8a Annibaletto J, Oudeyer S, Levacher V, Brière J.-F. Synthesis 2017; 49: 2117 8b Noda H. Chem. Pharm. Bull. 2021; 69: 1160 8c Cadart T, Berthonneau C, Levacher V, Perrio S, Brière J.-F. Chem. Eur. J. 2016; 22: 15261 8d Eitzinger A, Winter M, Schörgenhumer J, Waser M. Chem. Commun. 2020; 56: 579 8e Capaccio V, Sicignano M, Rodríguez RI, Della Sala G, Alemán J. Org. Lett. 2020; 22: 219 8f Zebrowski P, Eder I, Eitzinger A, Mallojjala SC, Waser M. ACS Org. Inorg. Au 2022; 2: 34 For reviews on β-amino acid synthesis, see: 9a Ma J.-A. Angew. Chem. Int. Ed. 2003; 42: 4290 9b Weiner B, Szymański W, Janssen DB, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2010; 39: 1656 9c Noda H, Shibasaki M. Eur. J. Org. Chem. 2020; 2350 9d Zhang X.-X, Gao Y, Hu X.-S, Ji C.-B, Liu Y.-L, Yu J.-S. Adv. Synth. Catal. 2020; 362: 4763 10a Yu J.-S, Espinosa M, Noda H, Shibasaki M. J. Am. Chem. Soc. 2019; 141: 10530 10b Tak RK, Noda H, Shibasaki M. Org. Lett. 2021; 23: 8617 For selected reviews on nitrene chemistry, see: 11a Müller P, Fruit C. Chem. Rev. 2003; 103: 2905 11b Díaz-Requejo MM, Pérez PJ. Chem. Rev. 2008; 108: 3379 11c Darses B, Rodrigues R, Neuville L, Mazurais M, Dauban P. Chem. Commun. 2017; 53: 493 11d Noda H, Tang X, Shibasaki M. Helv. Chim. Acta 2021; 104: e2100140 11e Ju M, Schomaker JM. Nat. Rev. Chem. 2021; 5: 580 12 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257 13a Hennessy ET, Betley TA. Science 2013; 340: 591 13b Iovan DA, Wilding MJ. T, Baek Y, Hennessy ET, Betley TA. Angew. Chem. Int. Ed. 2017; 56: 15599 13c Munnuri S, Adebesin AM, Paudyal MP, Yousufuddin M, Dalipe A, Falck JR. J. Am. Chem. Soc. 2017; 139: 18288 13d Qin J, Zhou Z, Cui T, Hemming M, Meggers E. Chem. Sci. 2019; 10: 3202 13e Noda H, Asada Y, Shibasaki M. Org. Lett. 2020; 22: 8769 14a Espinosa M, Noda H, Shibasaki M. Org. Lett. 2019; 21: 9296 14b Tang X, Tak RK, Noda H, Shibasaki M. Angew. Chem. Int. Ed. 2022; 61: e202212421 14c Tang X, Noda H, Shibasaki M. Angew. Chem. Int. Ed. 2023; e202311027 15 Espino CG, Fiori KW, Kim M, Du Bois J. J. Am. Chem. Soc. 2004; 126: 15378 16a Schaefer HF. III. Acc. Chem. Res. 1979; 12: 288 16b Lee JH, Gupta S, Jeong W, Rhee YH, Park J. Angew. Chem. Int. Ed. 2012; 51: 10851 17 We made a similar observation under copper catalytic conditions, see: Tak RK, Amemiya F, Noda H, Shibasaki M. Chem. Sci. 2021; 12: 7809 18 anti-(5-Phenylpyrrolidin-2-yl)acetic Acid (2a); Typical Procedure A 10 mL test tube equipped with a magnetic stirrer bar was charged with 1a (615 mg, 3.0 mmol), which was dissolved in HFIP (15 mL, 0.2 M) at 0 °C. Rh2(esp)2 (11.4 mg, 0.015 mmol, 0.5 mol%) was then added to the solution in one portion, and the mixture was stirred at 0 °C until 1a was fully consumed (TLC). The reaction mixture was then concentrated under reduced pressure, and the diastereomer ratio was determined by 1H NMR analysis of the unpurified mixture. The crude residue was washed with CH2Cl2 (3 × 3 mL) and pentane (2 × 5 mL) to remove any impurities and the catalyst, giving the analytically pure product as a white solid; yield: 560 mg (91%); mp 162–163 °C. IR (KBr): 3029, 2971, 2927, 2880, 2571, 2531, 1640, 1546, 1396 cm–1. 1H NMR (400 MHz, D2O): δ = 7.58–7.46 (m, 5 H), 4.86–4.81 (m, 1 H), 4.13 (dq, J = 9.7, 6.6 Hz, 1 H), 2.73 (d, J = 6.6 Hz, 2 H), 2.51 (ddtd, J = 22.0, 13.4, 6.9, 2.0 Hz, 2 H), 2.33 (dtd, J = 13.0, 10.9, 7.0 Hz, 1 H), 2.08–1.81 (m, 1 H). 13C NMR (100 MHz, D2O): δ = 177.7, 134.8, 129.5, 129.2, 127.6, 62.5, 57.6, 38.8, 30.8, 30.3. HRMS (ESI): m/z [M + H]+ calcd for C12H16NO2: 206.1176; found: 206.1175. 19 CCDC 2297130 contains the supplementary crystallographic data for compound 8. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures 20 Shioiri T, Ninomiya K, Yamada S. J. Am. Chem. Soc. 1972; 94: 6203 21 Schäfer G, Matthey C, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 9173 22 Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801 23 Fawcett A, Pradeilles J, Wang Y, Mutsuga T, Myers EL, Aggarwal VK. Science 2017; 357: 283 24 Šterman A, Sosič I, Gobec S, Časar Z. Org. Chem. Front. 2019; 6: 2991 Supplementary Material Supplementary Material Supporting Information CIF File