Synlett 2024; 35(13): 1545-1550
DOI: 10.1055/a-2205-5806
letter

Silver Nitrate Catalyzed Sulfonylation of O-Propargyl Alkynes

a   Universidade Federal de Pernambuco, Departamento de Química Fundamental, Av. Jorn. Aníbal Fernandes, s/n - Cidade Universitária, Recife , PE, 50740-560, Brazil
,
b   Universidade de São Paulo, Instituto de Física, Av. Trab. São Carlense, 400 - Parque Arnold Schimidt, São Carlos, SP, 13566-590, Brazil
,
a   Universidade Federal de Pernambuco, Departamento de Química Fundamental, Av. Jorn. Aníbal Fernandes, s/n - Cidade Universitária, Recife , PE, 50740-560, Brazil
,
c   Universidade Federal de Pernambuco, Colégio de Aplicação, Av. da Arquitetura, s/n - Cidade Universitária, Recife, PE, 50740-550, Brazil
,
a   Universidade Federal de Pernambuco, Departamento de Química Fundamental, Av. Jorn. Aníbal Fernandes, s/n - Cidade Universitária, Recife , PE, 50740-560, Brazil
,
a   Universidade Federal de Pernambuco, Departamento de Química Fundamental, Av. Jorn. Aníbal Fernandes, s/n - Cidade Universitária, Recife , PE, 50740-560, Brazil
› Institutsangaben
We gratefully acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant Numbers 302829/2022-9 and 405052/2021-9), and the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE, Grant Numbers APQ-0436-1.06/22, IBPG-0009-1.06/19, and BFP-0039-1.06/22) for financial support.


Abstract

The development of new catalytic methods based on lower-cost metals under environmentally friendly conditions is still a challenge. Herein, we report an efficient strategy for the synthesis of vinyl sulfones from O-propargyl alkynes and sodium salts of sulfinic acids using silver nitrate, an inexpensive and readily available catalyst, under air atmosphere using aqueous conditions. The products were obtained in good to moderate yields, and the mechanism of the reaction was also investigated.

Supporting Information

Primary Data



Publikationsverlauf

Eingereicht: 02. August 2023

Angenommen nach Revision: 07. November 2023

Accepted Manuscript online:
07. November 2023

Artikel online veröffentlicht:
14. Dezember 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Sabatini MT, Boulton LT, Sneddon HF, Sheppard TD. Nat. Catal. 2019; 2: 10
    • 1b Wang S, König B. Angew. Chem. Int. Ed. 2021; 60: 21624
    • 2a Papa V, Cao Y, Spannenberg A, Junge K, Beller M. Nat. Catal. 2020; 3: 135
    • 2b Rana S, Biswas JP, Paul S, Paik A, Maiti D. Chem. Soc. Rev. 2021; 50: 243
  • 3 Fang Y, Luo Z, Xu X. RSC Adv. 2016; 6: 59661
  • 4 Delucchi O, Pasquato L. Tetrahedron 1988; 44: 6755
  • 5 Giovannini R, Marcantoni E, Petrini M. Tetrahedron Lett. 1998; 39: 5827
  • 6 Fuchs PL, Braish TF. Chem. Rev. 1986; 86: 903
  • 7 Giovannini R, Petrini M. Chem. Commun. 1997; 1829
  • 8 Tang H, Kuang Y, Zeng J, Li X, Zhou W, Lu Y. RSC Adv. 2019; 9: 31474
  • 9 Kerr ID, Lee JH, Farady CJ, Marion R, Rickert M, Sajid M, Pandey KC, Caffrey CR, Legac J, Hansell E, McKerrow JH, Craik CS, Rosenthal PJ, Brinen LS. J. Biol. Chem. 2009; 284: 25697
  • 10 Ettari R, Nizi E, Di Francesco ME, Dude M.-A, Pradel G, Vicík R, Schirmeister T, Micale N, Grasso S, Zappalà M. J. Med. Chem. 2008; 51: 988
    • 11a Rong G, Mao J, Yan H, Zheng Y, Zhang G. J. Org. Chem. 2015; 80: 4697
    • 11b Zhao Y, Lai Y.-L, Du K.-S, Lin D.-Z, Huang J.-M. J. Org. Chem. 2017; 82: 9655
    • 12a Li X, Shi M. Tetrahedron Lett. 2013; 54: 3071
    • 12b Li X, Shi X, Fang M, Xu X. J. Org. Chem. 2013; 78: 9499
    • 12c Li S, Li X, Yang F, Wu Y. Org. Chem. Front. 2015; 2: 1076
    • 13a Deng G, Zou J. ARKIVOC 2010; 186
    • 13b Jiang H, Chen X, Zhang Y, Yu S. Adv. Synth. Catal. 2013; 355: 809
  • 14 Liu Z, Chen X, Chen J, Qu L, Xia Y, Wu H, Ma H, Zhua S, Zhao Y. RSC Adv. 2015; 5: 71215
  • 15 Meyer AU, Lau VW-H, König B, Lotsch BV. Eur. J. Org. Chem. 2017; 2179
  • 16 Xiao X, Tian H.-Y, Huang Y.-Q, Lu Y.-J, Fang J.-J, Zhou G.-J, Chen F.-E. Chem. Commun. 2022; 58: 6765
  • 17 Xue Q, Mao Z, Shi Y, Mao H, Cheng Y, Zhu C. Tetrahedron Lett. 2012; 53: 1851
  • 18 Woolven H, Gonzalez-Rodriguez C, Marco L, Thompson AL, Willis MC. Org. Lett. 2011; 13: 4876
  • 20 Reddy RJ, Kumari AH. RSC Adv. 2021; 11: 9130
  • 21 Xu Y, Zhao J, Tang X, Wu W, Jiang H. Adv. Synth. Catal. 2014; 356: 2029
  • 22 Chawla R, Kapoor R, Singha AK, Yadav LD. S. Green Chem. 2012; 14: 1308
  • 23 Sawangphon T, Katrun P, Chaisiwamongkhol K, Pohmakotr M, Reutrakul V, Jaipetch T, Soorukram D, Kuhakarn C. Synth. Commun. 2013; 43: 1692
  • 24 Rodríguez A, Moran WJ. J. Org. Chem. 2016; 81: 2543
    • 25a Jiang Q, Xu B, Jia J, Zhao A, Zhao YR, Li YY, He NN, Guo CC. J. Org. Chem. 2014; 79: 7372
    • 25b Guo R, Gui Q, Wang D, Tan D. Catal. Lett. 2014; 144: 1377
  • 26 Freitas QP. S. B, Lira RA. G, Freitas JJ. R, Zeni G, Menezes PH. J. Braz. Chem. Soc. 2018; 29: 1167
  • 27 Silver Catalysis in Organic Synthesis . Li C.-J, Bi X. Wiley-VCH; Weinheim: 2019
  • 28 Hashimoto K. Sangyo Igaku 1991; 33: 463
  • 29 Halbes-Letinois U, Weibel J.-M, Pale P. Chem. Soc. Rev. 2007; 36: 759
  • 30 Representative Procedure the Synthesis of (E)-[(3-Phenoxyprop-1-en-1-yl)sulfonyl]benzene (3a) To a round-bottomed flask containing alkyne 1a (0.4 mmol, 53 mg), benzenesulfinic acid sodium salt (2a, 0.8 mmol, 131 mg), K2S2O8 (1.6 mmol, 432 mg), and AgNO3 (0.08 mmol, 13.4 mg) was added a mixture of methanol and water (1:1, 4 mL). The mixture was refluxed for 1 h, cooled to room temperature, followed by the addition of water (10 mL) and CH2Cl2 (10 mL). The organic phase was collected, dried over anhydrous MgSO4, and filtered. The solvent was removed in vacuo, and the crude product was purified by column chromatography (Hex–EtOAc, 8:2) to give 60 mg (55%) of the title compound as an oil. 1Η NMR (400 MHz, CDCl3): δ = 7.85–7.82 (m, 2 H, aryl), 7.57–7.45 (m, 3 H, aryl), 7.22–7.18 (m, 2 H, aryl), 7.05 (dt, 1 H, CH vinyl, J = 15 Hz), 6.92–6.78 (m, 3 H, aryl), 6.70 (dt, 1 H, CH vinyl, J = 15 Hz), 4.65 (dd, 2 H, CH2 allyl). 13C NMR (100 MHz, CDCl3): δ = 157.5, 140.6, 140.1, 133.4, 131.2, 129.6, 129.3, 127.7, 121.7, 114.5, 65.4. The data match with the previously described compound.22
  • 31 Sedelmeier J, Ley SV, Baxendale IR, Baumann M. Org. Lett. 2010; 12: 3618
  • 32 Fang G, Liu J, Shang W, Liu Q, Bi X. Chem. Asian J. 2016; 11: 3334
  • 33 Singh AK, Chawla R, Yadav LD. S. Tetrahedron Lett. 2014; 55: 4742
    • 34a Lu Q, Zhang J, Zhao G, Qi Y, Wang H, Lei A. J. Am. Chem. Soc. 2013; 135: 11481
    • 34b Lu Q, Zhang J, Zhao G, Qi Y, Wang H, Lei A. J. Am. Chem. Soc. 2013; 135: 11481
    • 34c Lu Q, Zhang J, Wei F, Qi Y, Wang H, Liu Z, Lei A. Angew. Chem. Int. Ed. 2013; 52: 7156
    • 34d Liu J, Zhuang S, Gui Q, Chen X, Yang Z, Tan Z. J. Am. Chem. Soc. 2014; 136: 3196
  • 35 Dillinger S, Bertus P, Pale P. Org. Lett. 2001; 3: 1661
  • 36 Halbes-Letinois U, Pale P, Berger S. J. Org. Chem. 2005; 70: 9185