Synthesis 2024; 56(05): 851-859
DOI: 10.1055/a-2226-4152
paper

Nitro Compounds/Alcohols as Oxidant/Reductant Pairs: A Practical Synthesis of Azo Compounds and Ketones

Renchao Ma
a   Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. of China
,
Ruiqin Zhang
b   School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. of China
,
Huanyi Qiu
b   School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. of China
,
Jianhui Xie
a   Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. of China
,
Yongmin Ma
a   Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. of China
› Author Affiliations


Abstract

Herein, a practical and green method for the synthesis of azobenzenes and ketones is reported using nitro compounds/alcohols as oxidant/reductant pairs under basic conditions. Alcohols and nitro compounds are oxidized/reduced in the absence of any metal catalysts under mild conditions and good yields of the corresponding ketones and azobenzenes are achieved selectively. In addition, the alcohols can even be oxidized with KNO3 or NaNO2.

Supporting Information



Publication History

Received: 21 November 2023

Accepted after revision: 11 December 2023

Accepted Manuscript online:
11 December 2023

Article published online:
16 January 2024

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Uyanik M, Ishihara K. ACS Catal. 2013; 3: 513
  • 2 Heravi MM, Fazeli A, Faghihi Z. Curr. Org. Synth. 2016; 13: 220
  • 3 Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
  • 4 Jones-Mensah E, Karki M, Magolan J. Synthesis 2016; 48: 1421
  • 5 Moore PW, Mirzayans PM, Williams CM. Chem. Eur. J. 2015; 21: 3567
  • 6 Riera A, Moreno M. Molecules 2010; 15: 1041
  • 7 Fernandes RA, Jha AK, Kumar P. Catal. Sci. Technol. 2020; 10: 7448
  • 8 Rayhan U, Kowser Z, Islam MN, Redshaw C, Yamato T. Top. Catal. 2018; 61: 560
  • 9 Zhu H, Leary DJ. O, Meyer MP. Angew. Chem. Int. Ed. 2012; 51: 11890
  • 10 Zhang A.-M, Lin G.-Q. Chin. J. Chem. 2001; 19: 1245
  • 11 Jang YK, Magre M, Rueping M. Org. Lett. 2019; 21: 8349
  • 12 Zimmerman HE. Acc. Chem. Res. 2012; 45: 164
  • 13 Iosub AV, Wallentin C.-J, Bergman J. Nat. Catal. 2018; 1: 645
    • 14a Chung K.-T. J. Environ. Sci. Health, Part C: Environ. Carcinog. Ecotoxicol. Rev. 2016; 34: 233
    • 14b Dong M, Babalhavaeji A, Samanta S, Beharry AA, Woolley GA. Acc. Chem. Res. 2015; 48: 2662
    • 14c Karimi-Maleh H, Beitollahi H, Senthil Kumar P, Tajik S, Jahani PM, Karimi F, Karaman C, Vasseghian Y, Baghayeri M, Rouhi J, Show PL, Rajendran S, Fu L, Zare N. Food Chem. Toxicol. 2022; 164: 112961
    • 14d Samanta S, Beharry AA, Sadovski O, McCormick TM, Babalhavaeji A, Tropepe V, Woolley GA. J. Am. Chem. Soc. 2013; 135: 9777
    • 14e Shen Y, Mao S, Chen F, Zhao S, Su W, Fu L, Zare N, Karimi F. Food Chem. Toxicol. 2022; 163: 112960
    • 14f Singh RL, Singh PK, Singh RP. Int. Biodeterior. Biodegrad. 2015; 104: 21
    • 14g Khan MN, Parmar DK, Das D. Mini-Rev. Med. Chem. 2021; 21: 1071
    • 14h Roldo M, Barbu E, Brown JF, Laight DW, Smart JD, Tsibouklis J. Expert Opin. Drug Delivery 2007; 4: 547
    • 14i Cai X, Song X, Zhu Q, Zhang X, Fan X. J. Org. Chem. 2022; 87: 11048
    • 15a Nystrom RF, Brown WG. J. Am. Chem. Soc. 1948; 70: 3738
    • 15b Giomi D, Ceccarelli J, Salvini A, Pinto M, Brandi A. ACS Omega 2022; 7: 35170
    • 15c Nozawa-Kumada K, Abe E, Ito S, Shigeno M, Kondo Y. Org. Biomol. Chem. 2018; 16: 3095
    • 15d Di Gioia ML, Leggio A, Guarino IF, Leotta V, Romio E, Liguori A. Tetrahedron Lett. 2015; 56: 5341
    • 15e Gund SH, Shelkar RS, Nagarkar JM. RSC Adv. 2014; 4: 42947
    • 16a Liu X, Li H.-Q, Ye S, Liu Y.-M, He H.-Y, Cao Y. Angew. Chem. Int. Ed. 2014; 53: 7624
    • 16b Li H.-Q, Liu X, Zhang Q, Li S.-S, Liu Y.-M, He H.-Y, Cao Y. Chem. Commun. 2015; 51: 11217
    • 16c Zhu H, Ke X, Yang X, Sarina S, Liu H. Angew. Chem. Int. Ed. 2010; 49: 9657
    • 16d Mondal B, Mukherjee PS. J. Am. Chem. Soc. 2018; 140: 12592
    • 16e Corma A, Concepción P, Serna P. Angew. Chem. Int. Ed. 2007; 46: 7266
    • 17a Chen G.-J, Xin W.-L, Wang J.-S, Cheng J.-Y, Dong Y.-B. Chem. Commun. 2019; 55: 3586
    • 17b Cheng S, Xin Y, Hu J, Feng W, Ahn D, Zeller M, He J, Xu Z. Inorg. Chem. 2021; 60: 5757
    • 18a Yan Z, Xie X, Song Q, Ma F, Sui X, Huo Z, Ma M. Green Chem. 2020; 22: 1301
    • 18b Hu L, Cao X, Shi L, Qi F, Guo Z, Lu J, Gu H. Org. Lett. 2011; 13: 5640
    • 18c Wang L, Neumann H, Beller M. Angew. Chem. Int. Ed. 2019; 58: 5417
  • 19 Kim JH, Park JH, Chung YK, Park KH. Adv. Synth. Catal. 2012; 354: 2412
  • 20 Chen W, Li H, Jin Y, Wu C, Yuan Z, Ma P, Wang J, Niu J. Chem. Commun. 2022; 58: 9902
  • 21 Hu L, Cao X, Chen L, Zheng J, Lu J, Sun X, Gu H. Chem. Commun. 2012; 48: 3445
  • 22 Sakai N, Fujii K, Nabeshima S, Ikeda R, Konakahara T. Chem. Commun. 2010; 46: 3173
    • 23a Moran MJ, Martina K, Baricco F, Tagliapietra S, Manzoli M, Cravotto G. Adv. Synth. Catal. 2020; 362: 2689
    • 23b Guo X, Hao C, Jin G, Zhu H.-Y, Guo X.-Y. Angew. Chem. Int. Ed. 2014; 53: 1973
  • 24 Park YK, Choi SB, Nam HJ, Jung D.-Y, Ahn HC, Choi K, Furukawa H, Kim J. Chem. Commun. 2010; 46: 3086
    • 25a Wang J, Yu X, Shi C, Lin D, Li J, Jin H, Chen X, Wang S. Adv. Synth. Catal. 2019; 361: 3525
    • 25b Xiao Y, Wu X, Wang H, Sun S, Yu J.-T, Cheng J. Org. Lett. 2019; 21: 2565
    • 25c Wu MY, Hu X, Liu J, Liao YF, Deng GJ. Org. Lett. 2012; 14: 2722
  • 26 Yang Y, Jing X, Zhang J, Yang F, Duan C. Nat. Commun. 2022; 13: 1940
  • 27 Grirrane A, Corma A, Garcia H. Science 2008; 322: 1661
    • 28a Ding Y, Zhang R, Ma R, Ma Y. Adv. Synth. Catal. 2022; 364: 355
    • 28b Ma R, Ding Y, Chen R, Wang Z, Wang L, Ma Y. J. Org. Chem. 2021; 86: 310
    • 28c Zhang R, Ding Y, Ma R, Xiao X, Chen R, Wang L, Ma Y. Org. Chem. Front. 2023; 10: 780
    • 28d Ding Y, Ma R, Ma Y. Tetrahedron Lett. 2021; 70: 153016
    • 29a Zhao P, Wang L, Guo X, Chen J, Liu Y, Wang L, Ma Y. Org. Lett. 2023; 25: 3314
    • 29b Qin Z, Zhang R, Ying S, Ma Y. Org. Chem. Front. 2022; 9: 5624
    • 29c Geng M, Kuang J, Fang W, Miao M, Ma Y. Org. Biomol. Chem. 2022; 20: 8187
  • 30 Zanardi A, Mata JA, Peris E. Chem. Eur. J. 2010; 16: 10502
  • 31 Okumura S, Lin CH, Takeda Y, Minakata S. J. Org. Chem. 2013; 78: 12090
  • 32 Zhang G, Liu L, Zhu Q, Kong X. Catal. Lett. 2022; 153: 1536
  • 33 Yi X, Xi C. Org. Lett. 2015; 17: 5836
  • 34 Kus NS. Monatsh. Chem. 2010; 141: 1089
  • 35 Ma Y, Wu S, Jiang S, Xiao F, Deng G.-J. Chin. J. Chem. 2021; 39: 3334
  • 36 Xu Y, Gao C, Andréasson J, Grøtli M. Org. Lett. 2018; 20: 4875
    • 37a Ma S, Ma J.-M, Cui J.-W, Rao C.-H, Jia M.-Z, Zhang J. Green Chem. 2022; 24: 2492
    • 37b Liu K.-J, Jiang S, Lu L.-H, Tang L.-L, Tang S.-S, Tang H.-S, Tang Z, He W.-M, Xu X. Green Chem. 2018; 20: 3038
  • 38 Saha S, Yadav S, Reshi NU. D, Dutta I, Kunnikuruvan S, Bera JK. ACS Catal. 2020; 10: 11385
  • 39 Muthaiah S, Hong SH. Adv. Synth. Catal. 2012; 354: 3045
  • 40 Wertz S, Studer A. Adv. Synth. Catal. 2011; 353: 69
  • 41 Shirase S, Shinohara K, Tsurugi H, Mashima K. ACS Catal. 2018; 8: 6939
  • 42 Wu H, He Y, Sun K, Xu Y, Wang W, Wu G. Org. Chem. Front. 2023; 10: 3213
  • 43 Wang J, Xu Y, Chen L, Ma Y, Wu G. Appl. Organomet. Chem. 2023; 37: e7046
  • 44 Wang J, Zhao L, Zhang Y, Zheng P, Zou P, Wu G. Org. Biomol. Chem. 2023; 21: 5643
  • 45 Wiles C, Watts P, Haswell SJ. Tetrahedron Lett. 2006; 47: 5261