Subscribe to RSS
DOI: 10.1055/a-2230-0759
Atroposelective Construction of Tetrasubstituted Axially Chiral Alkene Frameworks
We gratefully acknowledge the financial support from the National Natural Science Foundation of China (22201131) and Natural Science Foundation of Jiangsu Province (BK20220137).
Abstract
The construction of axially chiral alkene frameworks is currently one of hottest topics in the field of organic synthetic chemistry. Compared to traditional axially chiral molecules, such as biaryls, heterobiaryls, and anilides, the synthesis of axially chiral alkenes is far more challenging, especially for acyclic tetrasubstituted alkene analogues. In this review, we summarized the development of strategies for the synthesis of tetrasubstituted axially chiral alkene analogues, including asymmetric difunctionalization, C–H functionalization, cross-coupling, (dynamic) kinetic resolution, and asymmetric allylic substitution-isomerization.
1 Introduction
2 Synthesis of Cyclic Tetrasubstituted Axially Chiral Alkenes
3 Synthesis of Acyclic Tetrasubstituted Axially Chiral Alkenes
4 Summary and Outlook
Key words
axial chirality - tetrasubstituted alkenes - difunctionalization - C–H functionalization - cross-coupling - kinetic resolution - asymmetric allylic substitution-isomerizationPublication History
Received: 20 November 2023
Accepted after revision: 14 December 2023
Accepted Manuscript online:
14 December 2023
Article published online:
24 January 2024
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Yang S.-H, Naaman R, Paltiel Y, Parkin SS. P. Nat. Rev. Phys. 2021; 3: 328
- 1b Brandt JR, Salerno F, Fuchter MJ. Nat. Rev. Chem. 2017; 1: 45
- 1c Mun J, Kim M, Yang Y, Badloe T, Ni J, Chen Y, Qiu C.-W, Rho J. Light Sci. Appl. 2020; 9: 139
- 1d Lee C, Weber JM, Rodriguez LE, Sheppard RY, Barge LM, Berger EL, Burton AS. Symmetry 2022; 14: 460
- 1e MacKenzie LE, Stachelek P. Nat. Chem. 2021; 13: 521
- 1f Meskers SC. J. Mater. Adv. 2022; 3: 2324
- 2a Teng Y, Gu C, Chen Z, Jiang H, Xiong Y, Liu D, Xiao D. Chirality 2022; 34: 1094
- 2b Liu Y, Wu Z, Armstrong DW, Wolosker H, Zheng Y. Nat. Rev. Chem. 2023; 7: 355
- 2c Alemán J, Cabrera S. Chem. Soc. Rev. 2013; 42: 774
- 2d Liu W, Qin T, Xie W, Yang X. Chem. Eur. J. 2022; 28: e202202369
- 3a Xiang S.-H, Tan B. Nat. Commun. 2020; 11: 3786
- 3b del Corte X, de Marigorta EM, Palacios F, Vicario J, Maestro A. Org. Chem. Front. 2022; 9: 6331
- 3c Wei L, Wang C.-J. Chem Catal. 2023; 3: 100455
- 3d Hall M. RSC Chem. Biol. 2021; 2: 958
- 3e Genzink MJ, Kidd JB, Swords WB, Yoon TP. Chem. Rev. 2022; 122: 1654
- 3f Liu W, Yang X. Asian J. Org. Chem. 2021; 10: 692
- 3g Zhao C, Blaszczyk SA, Wang J. Green Synth. Catal. 2021; 2: 198
- 3h Shi C.-Y, Zhou B, Teng M.-Y, Ye L.-W. Synthesis 2023; 55: 3895
- 4a Cheng JK, Xiang S.-H, Li S, Ye L, Tan B. Chem. Rev. 2021; 121: 4805
- 4b Mei G.-J, Koay WL, Guan C.-Y, Lu Y. Chem 2022; 8: 1855
- 4c Rodríguez-Salamanca P, Fernández R, Hornillos V, Lassaletta JM. Chem. Eur. J. 2022; 28: e202104442
- 4d Liu C.-X, Zhang W.-W, Yin S.-Y, Gu Q, You S.-L. J. Am. Chem. Soc. 2021; 143: 14025
- 4e Min X.-L, Zhang X.-L, Shen R, Zhang Q, He Y. Org. Chem. Front. 2022; 9: 2280
- 4f Wu Y.-J, Liao G, Shi B.-F. Green Synth. Catal. 2022; 3: 117
- 4g Schmidt TA, Sparr C. Acc. Chem. Res. 2021; 54: 2764
- 4h Zhang H.-H, Shi F. Acc. Chem. Res. 2022; 55: 2562
- 4i Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Chem. Soc. Rev. 2021; 50: 2968
- 4j Qin W, Liu Y, Yan H. Acc. Chem. Res. 2022; 55: 2780
- 4k Shao Y.-D, Cheng D.-J. ChemCatChem 2021; 13: 1271
- 5a Kawabata T, Yahiro K, Fuji K. J. Am. Chem. Soc. 1991; 113: 9694
- 5b Shibata T, Otomo M, Tahara Y.-k, Endo K. Org. Biomol. Chem. 2008; 6: 4296
- 6 Feng J, Li B, He Y, Gu Z. Angew. Chem. Int. Ed. 2016; 55: 2186
- 7 Zheng S.-C, Wu S, Zhou Q, Chung LW, Ye L, Tan B. Nat. Commun. 2017; 8: 15238
- 8a Wu S, Xiang S.-H, Cheng JK, Tan B. Tetrahedron Chem 2022; 1: 100009
- 8b Feng J, Gu Z. SynOpen 2021; 5: 68
- 8c Zhang Z.-X, Zhai T.-Y, Ye L.-W. Chem Catal. 2021; 1: 1378
- 8d Qian P.-F, Zhou T, Shi B.-F. Chem. Commun. 2023; 59: 12669
- 8e Li Z-H, Li Q.-Z, Bai H.-Y, Zhang S.-Y. Chem Catal. 2023; 3: 100594
- 9 Jolliffe JD, Armstrong RJ, Smith MD. Nat. Chem. 2017; 9: 558
- 10 Fang S, He J, Liu Z, Su Z, Guo F, Wang T. ACS Catal. 2023; 13: 13077
- 11 Mondal B, Chen H, Maiti R, Wang H, Cai H, Mou C, Hao L, Chai H, Chi YR. Org. Lett. 2023; 25: 8252
- 12 Hang Q.-Q, Wu S.-F, Yang S, Wang X, Zhong Z, Zhang Y.-C, Shi F. Sci. China Chem. 2022; 65: 1929
- 13a Lu C.-J, Xu Q, Feng J, Liu R.-R. Angew. Chem. Int. Ed. 2023; 62: e202216863
- 13b Hedouin G, Hazra S, Gallou F, Handa S. ACS Catal. 2022; 12: 4918
- 14 Pan C, Zhu Z, Zhang M, Gu Z. Angew. Chem. Int. Ed. 2017; 56: 4777
- 15a Yue Q, Liu B, Liao G, Shi B.-F. ACS Catal. 2022; 12: 9359
- 15b Liu C.-X, Yin S.-Y, Zhao F, Yang H, Feng Z, Gu Q, You S.-L. Chem. Rev. 2023; 123: 10079
- 15c Zhang C, Li Z.-L, Gu Q.-S, Liu X.-Y. Nat. Commun. 2021; 12: 475
- 15d Liu W, Ke J, He C. Chem. Sci. 2021; 12: 10972
- 15e Wang P.-S, Gong L.-Z. Acc. Chem. Res. 2020; 53: 2841
- 15f Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
- 15g Taskesenligil Y, Saracoglu N. Synthesis 2023; 55: 3417
- 16 Tóth BL, Monory A, Egyed O, Domján A, Bényei A, Szathury B, Novák Z, Stirling A. Chem. Sci. 2021; 12: 5152
- 17 Sun Q.-Y, Ma W.-Y, Yang K.-F, Cao J, Zheng Z.-J, Xu Z, Cui Y.-M, Xu L.-W. Chem. Commun. 2018; 54: 10706
- 18a Dong B, Shen J, Xie L.-G. Org. Chem. Front. 2023; 10: 1322
- 18b Ramani A, Desai B, Patel M, Naveen T. Asian J. Org. Chem. 2022; 11: e202200047
- 18c Liu W, Kong W. Org. Chem. Front. 2020; 7: 3941
- 18d Fu L, Chen X, Fan W, Chen P, Liu G. J. Am. Chem. Soc. 2023; 145: 13476
- 18e Li Q.-Z, Li Z.-H, Kang J.-C, Ding T.-M, Zhang S.-Y. Chem Catal. 2022; 2: 3185
- 18f Sheng F.-T, Wang S.-C, Zhou J, Chen C, Wang Y, Zhu S. ACS Catal. 2023; 13: 3841
- 18g Woldegiorgis AG, Gu H, Lin X. Org. Lett. 2023; 25: 2068
- 18h Wu P, Yan X.-Y, Jiang S, Lu Y.-N, Tan W, Shi F. Chem. Synth. 2023; 3: 6
- 18i Gou B.-B, Tang Y, Lin Y.-H, Ye L, Jian Q.-S, Sun H.-R, Chen J, Zhou L. Angew. Chem. Int. Ed. 2022; 61: e202208174
- 19 Liang Y, Ji J, Zhang X, Jiang Q, Luo J, Zhao X. Angew. Chem. Int. Ed. 2020; 59: 4959
- 20a Wang N, Wu Z, Wang J, Ullah N, Lu Y. Chem. Soc. Rev. 2021; 50: 9766
- 20b Achar TK, Al-Thabaiti SA, Mokhtar M, Maiti D. Chem Catal. 2023; 3: 100575
- 21 Wang F, Jing J, Zhao Y, Zhu X, Zhang X.-P, Zhao L, Hu P, Deng W.-Q, Li X. Angew. Chem. Int. Ed. 2021; 60: 16628
- 22 Tan Y, Jia S, Hu F, Liu Y, Peng L, Li D, Yan H. J. Am. Chem. Soc. 2018; 140: 16893
- 23 Yang Y, Liu H, Liu X, Liu T, Zhu Y, Zhang A, Wang T, Hua Y, Wang M, Mao G, Liu L. Chin. J. Org. Chem. 2019; 39: 1655
- 24 Wu S, Xiang S.-H, Li S, Ding W.-Y, Zhang L, Jiang P.-Y, Zhou Z.-A, Tan B. Nat. Catal. 2021; 4: 692
- 25 Mi R, Chen H, Zhou X, Li N, Ji D, Wang F, Lan Y, Li X. Angew. Chem. Int. Ed. 2022; 61: e202111860
- 26 Yokose D, Nagashima Y, Kinoshita S, Nogami J, Tanaka K. Angew. Chem. Int. Ed. 2022; 61: e202202542
- 27 Hu P, Hu L, Li X.-X, Pan M, Lu G, Li X. Angew. Chem. Int. Ed. 2024; 63: e202312923
- 28 Li W, Chen S, Xie J, Fan Z, Yang K, Song Q. Nat. Synth. 2023; 2: 140
- 29 Lin Z, Hu W, Zhang L, Wang C. ACS Catal. 2023; 13: 6795
- 30 Jin L, Yao Q.-J, Xie P.-P, Li Y, Zhan B.-B, Han Y.-Q, Hong X, Shi B.-F. Chem 2020; 6: 497
- 31 Jin L, Zhang P, Li Y, Yu X, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 12335
- 32 Kumar P, Shirke RP, Yadav S, Ramasastry SS. V. Org. Lett. 2021; 23: 4909
- 33 Wang Y.-B, Wu Q.-H, Zhou Z.-P, Xiang S.-H, Cui Y, Yu P, Tan B. Angew. Chem. Int. Ed. 2019; 58: 13443
- 34 Ma C, Sheng F.-T, Wang H.-Q, Deng S, Zhang Y.-C, Jiao Y, Tan W, Shi F. J. Am. Chem. Soc. 2020; 142: 15686
- 35a Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall J.-E, Pfaltz A, Pericàs MA, Diéguez M. Chem. Rev. 2021; 121: 4373
- 35b Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
- 35c Wei Y, Shi M. Chem. Rev. 2013; 113: 6659
- 35d Mohammadkhani L, Heravi MM. Chem. Rec. 2021; 21: 29
- 35e Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 36a Hassam M, Taher A, Arnott GE, Green IR, van Otterlo WA. L. Chem. Rev. 2015; 115: 5462
- 36b Liu X, Liu Q. Chem Catal. 2022; 2: 2852
- 36c Wu Y, Singh RP, Deng L. J. Am. Chem. Soc. 2011; 133: 12458
- 36d Ascough DM. H, Duarte F, Paton RS. J. Am. Chem. Soc. 2018; 140: 16740
- 36e Martinez-Erro S, Sanz-Marco A, Gómez AB, Vázquez-Romero A, Ahlquist MS. G, Martín-Matute B. J. Am. Chem. Soc. 2016; 138: 13408
- 36f Bai X.-d, Wang J, He Y. Adv. Synth. Catal. 2019; 361: 496
- 37 Sun C, Qi X, Min X.-L, Bai X.-D, Liu P, He Y. Chem. Sci. 2020; 11: 10119
- 38a Wang J, Qi X, Min X.-L, Yi W, Liu P, He Y. J. Am. Chem. Soc. 2021; 143: 10686
- 38b Wu Y.-X, Liu Q, Zhang Q, Ye Z, He Y. Cell Rep. Phys. Sci. 2022; 3: 101005
- 38c Zhang X.-L, Gu J, Cui W.-H, Ye Z, Yi W, Zhang Q, He Y. Angew. Chem. Int. Ed. 2022; 61: e202210456
- 38d Zhang X.-L, Qi X, Wu Y.-X, Liu P, He Y. Cell Rep. Phys. Sci. 2021; 2: 100594
- 39 For recent work from the Sun group applying this concept, see: Han Z, Zhuang H, Tang L, Zang Y, Guo W, Huang H, Sun J. Org. Lett. 2022; 24: 4246
- 40a Min X.-L, Zhang X.-L, Yi W, He Y. Nat. Commun. 2022; 13: 373
- 40b Min X.-L, Xu X.-R, He Y. Org. Lett. 2019; 21: 9188
- 40c Min X.-L, Sun C, He Y. Org. Lett. 2019; 21: 724
- 41 Zou J.-Y, Yang Y.-Y, Gu J, Liu F, Ye Z, Yi W, He Y. Angew. Chem. Int. Ed. 2023; 62: e202310320
- 42a Liu S.-J, Chen Z.-H, Chen J.-Y, Ni S.-F, Zhang Y.-C, Shi F. Angew. Chem. Int. Ed. 2022; 61: e202112226
- 42b Hao Y, Li Z.-H, Lian P.-F, Li Q.-Z, She Y, Ma Z.-G, Zhang S.-Y. Org. Lett. 2023; 25: 6913
- 42c Hao Y, Li Z.-H, Ma Z.-G, Liu R.-X, Ge R.-T, Li Q.-Z, Ding T.-M, Zhang S.-Y. Chem. Sci. 2023; 14: 9496
- 42d Chen Z.-B, Liu R.-X, Li Z.-H, Ding T.-M, Bai H.-Y, Shen Z, Zhang S.-Y. J. Org. Chem. 2023; 88: 14719
For selected recent reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected recent reviews, see:
For selected recent papers, see:
For selected reviews, see:
For selected papers on alkene isomerization, see: